Participating media exposed to collimated short-pulse irradiation - A Laguerre-Galerkin solution

2007-10-01
A new method is developed for the solution of radiative transfer in a one-dimensional absorbing and isotropically scattering medium with short-pulse irradiation on one of its boundaries. The time-dependent radiative intensity is expanded in a series of Laguerre polynomials with time as the argument. Moments of the radiative transfer equation, as well as of the boundary conditions, then yield a set of coupled time-independent radiative transfer problems. This set, in turn, is reduced to a set of algebraic equations by the application of the Galerkin method. The transient transmittance and reflectance of the medium are evaluated for various values of the optical thickness, scattering albedo and pulse duration. It is demonstrated that the Laguerre-Galerkin method is not only easier to implement and more efficient but also yields more accurate results compared to the direct application of the Galerkin method. The results are in very good agreement with those available in the literature.
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

Suggestions

Optimization of Vortex Promoter Parameters to Enhance Heat Transfer Rate in Electronic Equipment
Ayli, Ece; Bayer, Özgür (ASME International, 2020-04-01)
In this paper, optimization of the location and the geometry of a vortex promoter located above in a finned surface in a channel with eight heat sources is investigated for a Reynolds number of 12,500 < Re < 27,700. Heat transfer rates and the corresponding Nusselt number distributions are studied both experimentally and numerically using different vortex promoter geometries (square, circular, and triangular) in different locations to illustrate the effect of vortex promoter on the fluid flow. Optimization ...
Linear stability analysis in compressible, flat-plate boundary-layers
Özgen, Serkan (Island Press, 2008-01-01)
The stability problem of two-dimensional compressible flat-plate boundary layers is handled using the linear stability theory. The stability equations obtained from three-dimensional compressible Navier-Stokes equations are solved simultaneously with two-dimensional mean flow equations, using an efficient shoot-search technique for adiabatic wall condition. In the analysis, a wide range of Mach numbers extending well into the hypersonic range are considered for the mean flow, whereas both two- and three-dim...
Experimental Thermal Performance Characterization of Flat Grooved Heat Pipes
Alijani, Hossein; ÇETİN, BARBAROS; Akkus, Yigit; Dursunkaya, Zafer (Informa UK Limited, 2019-06-15)
The thermal characterization of aluminum flat grooved heat pipes is performed experimentally for different groove dimensions. Three heat pipes with groove widths of 0.2 mm, 0.4 mm, and 1.5 mm are used in the experiments. The effect of the amount of the working fluid is extensively studied for each groove width. The results reveal that, although all three succeed in dissipating the heat input through the phase change of the working fluid by continuous evaporation and condensation, the effectiveness of the he...
An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer
Yildiz, S; Yüncü, Hafit (Springer Science and Business Media LLC, 2004-02-01)
Natural convection heat transfer in annular fin-arrays mounted on a horizontal cylinder was experimentally investigated. An experimental set-up was constructed to investigate heat transfer characteristics of 18 sets of annular fin-arrays mounted on a horizontal cylinder of 24.9-mm diameter in atmospheric conditions. Keeping the fin thickness fixed at 1 mm, fin diameter is varied from 35 mm to 125 mm and fin spacing is varied from 3.6 mm to 31.7 mm. The base-to-ambient temperature difference was also varied ...
Heat transfer effects on the stability of low speed plane Couette-Poiseuille flow
Oezgen, Serkan; Dursunkaya, Zafer; Ebrinc, Ali Asian (Springer Science and Business Media LLC, 2007-10-01)
The stability problem of low-speed plane Couette-Poiseuille flow of air under heat transfer effects is solved numerically using the linear stability theory. Stability equations obtained from two-dimensional equations of motion and their boundary conditions result in an eigenvalue problem that is solved using an efficient shoot-search technique. Variable fluid properties are accounted for both in the basic flow and the perturbation (stability) equations. A parametric study is performed in order to assess the...
Citation Formats
H. T. Okutucu Özyurt, “Participating media exposed to collimated short-pulse irradiation - A Laguerre-Galerkin solution,” INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, pp. 4352–4359, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56694.