Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimization of Vortex Promoter Parameters to Enhance Heat Transfer Rate in Electronic Equipment
Date
2020-04-01
Author
Ayli, Ece
Bayer, Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
274
views
0
downloads
Cite This
In this paper, optimization of the location and the geometry of a vortex promoter located above in a finned surface in a channel with eight heat sources is investigated for a Reynolds number of 12,500 < Re < 27,700. Heat transfer rates and the corresponding Nusselt number distributions are studied both experimentally and numerically using different vortex promoter geometries (square, circular, and triangular) in different locations to illustrate the effect of vortex promoter on the fluid flow. Optimization study considered a range of following parameters: blockage ratio of 0.30<(y/C) < 0.45 and interpromoter distance ratio of 0.2277 <(x/L) < 0.3416. Results show that fins over which rectangular and circular promoters are integrated perform better in enhancing the heat transfer. According to the numerical and experimental results, higher blockage ratios cause significantly higher heat transfer coefficients. According to the observations, as the interpromoter distances increase, shedding gains strength, and more turbulence is created. All vortex promoters enhance heat transfer resulting in lower temperature values on the finned surface for different (y/C) and (x/L) values and Reynolds numbers. The use of promoters enhances the heat transfer, and the decrease in the maximum temperature values is recorded on the finned surface changing between 15% and 27%. The biggest decrease in maximum surface temperature value is 500 K-364 K and observed in circular promoter case with (y/C) = 0.43, (x/L) = 0.3416, and Reynolds numbers of 22,200.
Subject Keywords
General Engineering
,
General Materials Science
,
Condensed Matter Physics
,
Fluid Flow and Transfer Processes
URI
https://hdl.handle.net/11511/36903
Journal
JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS
DOI
https://doi.org/10.1115/1.4043994
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer
Yildiz, S; Yüncü, Hafit (Springer Science and Business Media LLC, 2004-02-01)
Natural convection heat transfer in annular fin-arrays mounted on a horizontal cylinder was experimentally investigated. An experimental set-up was constructed to investigate heat transfer characteristics of 18 sets of annular fin-arrays mounted on a horizontal cylinder of 24.9-mm diameter in atmospheric conditions. Keeping the fin thickness fixed at 1 mm, fin diameter is varied from 35 mm to 125 mm and fin spacing is varied from 3.6 mm to 31.7 mm. The base-to-ambient temperature difference was also varied ...
Surface-to-bed heat transfer for high-density particles in conical spouted and spout-fluid beds
Yaman, Onur; Külah, Görkem; KÖKSAL, MURAT (Elsevier BV, 2019-02-01)
Bed-to-surface heat transfer experiments from a vertically submerged cylindrical surface were conducted in laboratory-scale (D-c = 25 cm) conical spouted and spout-fluid beds at two different conical angles (31 degrees and 66 degrees) in the high particle density range (2500 kg/m(3) <= sigma(p) <= 6000 kg/m(3)). The effects of the bed design parameters (conical angle and inlet diameter of spouting gas entrance) and operating conditions (static bed height, particle size, density, and spouting and fluidizatio...
Optimization of Joule-Thomson cryocooler heat exchanger using one-dimensional numerical modeling
Baki, Murat; Okutucu-Özyurt, Tuba; Sert, Cüneyt (Elsevier BV, 2019-12-01)
Steady state operation of the heat exchanger of a Joule-Thomson cryocooler is studied numerically through a one-dimensional model. Argon is used as the working fluid. The developed model is first verified using a cooler configuration that is studied extensively in the literature. Then the model is improved in several ways. A major mistake seen in many of the previous studies is related to the mismatch of the friction coefficient correlation and the conservation of momentum equation of the tube side flow. Wi...
Composition-tuned band gap energy and refractive index in GaSxSe1-x layered mixed crystals
IŞIK, MEHMET; Hasanlı, Nızamı (Elsevier BV, 2017-04-01)
Transmission and reflection measurements on GaSxSe1-x mixed crystals (0 <= x <= 1) were carried out in the 400-1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive i...
Investigation of carrier scattering mechanisms in TIInS2 single crystals by Hall effect measurements
Qasrawi, AF; Hasanlı, Nızamı (Wiley, 2004-05-01)
TlInS2 single crystals are studied through the conductivity and Hall effect measurements in the temperature regions of 100-400 and 170-400 K, respectively. An anomalous behavior of Hall voltage, which changes sign below 315 K, is interpreted through the existence of deep donor impurity levels that behave as acceptor levels when are empty. The hole and electron mobility are limited by the hole- and electron-phonon short range interactions scattering above and below 315 K, respectively. An energy level of 35 ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Ayli and Ö. Bayer, “Optimization of Vortex Promoter Parameters to Enhance Heat Transfer Rate in Electronic Equipment,”
JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36903.