Immobilization of Tyrosinase in Poly(2-thiophen-3-yl-alkyl ester) Derivatives

2008-01-01
ÇAMURLU, PINAR
Kayahan, Senem
Toppare, Levent Kamil
In this study, construction of novel biosensors for the determination of phenolic compound was performed via immobilization of tyrosinase during the electrochemical synthesis of conducting block copolymers of 2-thiophen-3-yl-alkyl ester derivatives with 3,4-ethylenedioxythiophene and synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT). The resultant biosensors were characterized in terms of their maximum reaction rates, Michaelis-Menten constants (Km), temperature and pH stabilities. All the copolymer matrices represented higher reaction rates and higher Km values in comparison to both polypyrrole and PEDOT matrices and a relation between the morphology of the matrice and the kinetic parameters was observed. Biosensors maintained their activity even at temperatures as high as 80C and could be used at pHs higher than 8 with high precision. The amount of phenolics in actual samples (red wines) was investigated using electrodes, and results were compared with those found from Folin-Ciocalteau method. Hence, the present study has proven the suitability of these copolymers to be used as polymer matrices for enzyme immobilization.
JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY

Suggestions

Immobilization of Invertase in a Novel Proton Conducting Poly(vinylphosphonic acid) - poly(1-vinylimidazole) Network
Isikli, Suheda; Tuncagil, Sevinc; Bozkurt, Ayhan; Toppare, Levent Kamil (Informa UK Limited, 2010-01-01)
A novel proton conducting polymer blend was prepared by mixing poly(vinylphosphonic acid) (PVPA) with poly(1-vinylimidazole) (PVI) at various stoichiometric ratios via changing molar ratio of monomer repeating unit to achieve the highest protonation. The polymer network having the most suitable stoichiometric ratio for substantial proton conductivity was prepared and characterized by FT-IR spectroscopy and proton conductivity measurements. The network was used for immobilization of invertase and some import...
Thiophene ended epsilon-caprolactone conducting copolymers and their electrochromic properties
Kerman, I; Toppare, Levent Kamil; Yilmaz, F; Yagci, Y (Informa UK Limited, 2005-04-01)
epsilon-Caprolactone was polymerized by ring-opening polymerization (ROP), using thiophene methanol as the initiator and stannous octoate as the catalyst to yield poly(epsilon-caprolactone) with a thiophene end group. Homopolymerization of thiophene functionalized poly (epsilon-caprolactone) (PCL) was achieved by a constant current electrolysis method. Copolymerizations of PCL with thiophene and pyrrole were achieved in acetonitrile (ACN)-tetrabutylammonium tetrafluoroborate (TBAFB) solvent-electrolyte coup...
Reactive extrusion of poly(ethylene terephthalate)-(ethylene/methyl acrylate/glycidyl methacrylate)-organoclay nanocomposites
Alyamac, Elif; Yılmazer, Ülkü (Wiley, 2007-04-01)
This study was conducted to investigate the effects of component concentrations and addition order of the components on the final properties of ternary nanocomposites composed of poly(ethylene terephthalate), organoclay, and an ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer acting as an impact modifier for PET. In this context, first, the optimum amount of the impact modifier was determined by melt compounding binary PET-terpolymer blends in a corotating twin-screw extruder. The amount...
Kinetic study of the reaction between hydroxyl-terminated polybutadiene and isophorone diisocyanate in bulk by quantitative FTIR spectroscopy
Kincal, D; Özkar, Saim (Wiley, 1997-12-05)
A kinetic study of the reaction between a hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI) was carried out in the bulk state by using quantitative Fourier transform infrared(FTIR) spectroscopy. The reaction is shown to obey a second-order rate law, being first order in both the HTPB and IPDI concentrations. The activation parameters obtained from the evaluation of kinetic data are Delta H-double dagger = 41.1 +/- 0.4 kJ mol, Delta S-double dagger = -198 +/- 2 J K-1 mol(-1) and E-a...
Immobilization of invertase and glucose oxidase in conducting H-type polysiloxane/polypyrrole block copolymers
Gursel, A; Alkan, S; Toppare, Levent Kamil; Yagci, Y (Elsevier BV, 2003-01-01)
In this study, immobilizations of enzymes, invertase and glucose oxidase, were achieved in conducting copolymers of N-pyrrolyl terminated polydimethylsiloxane/polypyrrole (PDMS/PPy) matrices via electrochemical polymerization. The kinetic parameters, v(max) (maximum reaction rate) and K-m (substrate affinity), of both free and immobilized enzymes were determined. The effect of supporting electrolytes, p-toluene sulfonic acid and sodium dodecyl sulfate, on enzyme activity and film morphologies was examined. ...
Citation Formats
P. ÇAMURLU, S. Kayahan, and L. K. Toppare, “Immobilization of Tyrosinase in Poly(2-thiophen-3-yl-alkyl ester) Derivatives,” JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, pp. 1011–1016, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41649.