Reduced graphene oxide supported nickel-palladium alloy nanoparticles as a superior catalyst for the hydrogenation of alkenes and alkynes under ambient conditions

2016-01-01
ÇETİNKAYA, Yasin
Metin, Onder
Balcı, Metin
Addressed herein is the superior catalytic performance of reduced graphene oxide supported Ni30Pd70 alloy nanoparticles (rGO-Ni30Pd70) for the direct hydrogenation of alkenes and alkynes to alkanes, which surpasses the commercial Pd/C catalyst both in activity and stability. A variety of cyclic or aromatic alkenes and alkynes (a total of 17 examples) were rapidly reduced to the corresponding alkanes with high yields (>99%) via the presented direct hydrogenation protocol under ambient conditions. Compared to the commercially available Pd/C (10 wt%) catalyst, the rGO-Ni30Pd70 catalyst provided higher yields in shorter reaction times under the optimized conditions. Moreover, the rGO-Ni30Pd70 catalysts were more stable and durable than the commercial Pd/C catalysts by preserving their initial activity after five consecutive runs in the hydrogenation reactions.
RSC ADVANCES

Suggestions

Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2021-08-15)
In this work, platinum(0) nanoparticles are deposited on the surface of magnetic cobalt ferrite forming magnetically separable Pt-0/CoFe2O4 nanoparticles, which are efficient catalysts in H-2 generation from the hydrolysis of ammonia borane. Catalytic activity of Pt-0/CoFe2O4 nanoparticles decreases with the increasing platinum loading, parallel to the average particle size. Pt-0/CoFe2O4 (0.23% wt. Pt) nanoparticles have an average diameter of 2.30 +/- 0.47 nm and show an extraordinary turnover frequency of...
Palladium nanoparticles supported on chemically derived graphene: An efficient and reusable catalyst for the dehydrogenation of ammonia borane
Metin, Onder; Kayhan, Emine; Özkar, Saim; Schneider, Jorg J. (2012-05-01)
Chemically derived graphene (CDG) was prepared by hydrazine hydrate reduction of graphene oxide and used as support for palladium nanoparticles (Pd NPs) generated ex situ with controllable particle size and dispersion. The Pd NPs supported on CDG were well characterized by using a combination of advance analytical techniques and employed as catalyst in the dehydrogenation and hydrolysis of ammonia borane (AB) in organic solvents and aqueous solutions, respectively. Monodisperse Pd NPs of 4.5 nm were prepare...
Hydrolytic dehydrogenation of ammonia borane catalyzed by reduced graphene oxide supported monodisperse palladium nanoparticles: High activity and detailed reaction kinetics
Kilic, Buket; Sencanli, Selin; Metin, Onder (2012-09-01)
A highly active and stable catalyst for the hydrolytic dehydrogenation of ammonia borane (AB) was prepared by supporting monodisperse palladium nanoparticles (Pd NPs) on reduced graphene oxide (RGO) via a facile method. RGO was prepared via modified chemical route and used as support matrices for monodisperse Pd NPs that were formed by the reduction of palladium(II) acetylacetonate by borane tert-butylamine complex in the presence of oleylamine. RGO supported Pd NPs (RGO@Pd) show high activity and stability...
Palladium nanoparticles supported on cobalt(II,III) oxide nanocatalyst: High reusability and outstanding catalytic activity in hydrolytic dehydrogenation of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2022-11-01)
A new palladium(0) nanocatalyst is developed to enhance the catalytic efficiency of precious metal catalysts in hydrogen generation from the hydrolytic dehydrogenation of ammonia borane. Magnetically separable Pd-0/Co3O4 nanocatalyst can readily be obtained by the reduction of palladium(II) cations impregnated on cobalt(II, III) oxide at room temperature. The obtained Pd-0/Co3O4 nanocatalyst with 0.25% wt. palladium loading has outstanding catalytic activity with a record turnover frequency of 3048 min(-1) ...
Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas
ARBAĞ, HÜSEYİN; YAŞYERLİ, SENA; YAŞYERLİ, NAİL; DOĞU, GÜLŞEN; Doğu, Timur (2016-12-05)
Mesoporous alumina with an ordered pore structure has significant advantages as a catalyst support in terms of minimization of diffusion limitations and coke formation during reforming reactions. Conversion of biogas to synthesis gas through dry reforming of methane, was investigated over Co & Ni impregnated mono- and bi-metallic mesoporous alumina catalysts with ordered pore structures. Comparison of the results obtained with mesoporous alumina catalysts containing 5% Ni and 2.5% Ni-2.5% Co proved that inc...
Citation Formats
Y. ÇETİNKAYA, O. Metin, and M. Balcı, “Reduced graphene oxide supported nickel-palladium alloy nanoparticles as a superior catalyst for the hydrogenation of alkenes and alkynes under ambient conditions,” RSC ADVANCES, pp. 28538–28542, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56839.