Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Modern tools for the time-discrete dynamics and optimization of gene-environment networks
Date
2011-12-01
Author
DEFTERLİ, ÖZLEM
Fuegenschuh, Armin
Weber, Gerhard Wilhelm
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
In this study, we discuss the models of genetic regulatory systems, so-called gene-environment networks. The dynamics of such kind of systems are described by a class of time-continuous ordinary differential equations having a general form (E) over dot = M(E)E, where E is a vector of gene-expression levels and environmental factors and M(E) is the matrix having functional entries containing unknown parameters to be optimized. Accordingly, time-discrete versions of that model class are studied and improved by introducing 3rd-order Heun's method and 4th-order classical Runge-Kutta method. The corresponding iteration formulas are derived and their matrix algebras are obtained. After that, we use nonlinear mixed-integer programming for the parameter estimation in the considered model and present the solution of a constrained and regularized given mixed-integer problem as an example. By using this solution and applying both the new and existing discretization schemes, we generate corresponding time-series of gene-expressions for each method. The comparison of the experimental data and the calculated approximate results is additionally done with the help of the figures to exercise the performance of the numerical schemes on this example.
Subject Keywords
Modelling and Simulation
,
Applied Mathematics
,
Numerical Analysis
URI
https://hdl.handle.net/11511/56913
Journal
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION
DOI
https://doi.org/10.1016/j.cnsns.2011.03.003
Collections
Graduate School of Applied Mathematics, Article