Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Ethylene-methyl acrylate-glycidyl methacrylate toughened poly(lactic acid) nanocomposites
Date
2013-06-05
Author
Baouz, Touffik
Rezgui, Farouk
Yılmazer, Ülkü
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Poly (lactic acid) (PLA) was melt blended in a twin screw extruder using an ethylene-methyl acrylate-glycidyl methacrylate rubber as a toughener. PLA/rubber blends were immiscible as observed by scanning electron microscopy. Impact strength and ductility of PLA were improved by the addition of the rubber at the expense of strength and stiffness. An organo-montmorillonite (OMMT) was used at 2 wt % to counteract the negative effect of the rubber on modulus, and balanced properties were observed at 10 wt % rubber content. X-ray diffraction and transmission electron microscopy revealed the formation of intercalated/exfoliated structure in the ternary nanocomposites. Thermal behavior analysis indicated that the degree of crystallinity is slightly affected by the clay and the rubber. Both the clay and the rubber decreased the crystallization temperature of PLA and acted as nucleating agents for PLA. The viscosity of the mixtures as measured by melt flow index was highly influenced by the rubber and the OMMT. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Subject Keywords
Glycidyl methacrylate
,
Rubber toughening
,
Organoclay
,
Nanocomposite
,
Poly(lactic acid)
URI
https://hdl.handle.net/11511/56932
Journal
JOURNAL OF APPLIED POLYMER SCIENCE
DOI
https://doi.org/10.1002/app.38529
Collections
Graduate School of Natural and Applied Sciences, Article