Vortex model based adaptive flight control using synthetic jets

2009-01-01
Muse, Jonathan A.
Tchieu, Andrew A.
Kutay, Ali Türker
Chandramohan, Rajeev
Calise, Anthony J.
Leonard, Anthony
A simple low-order model is derived for developing flight control laws for controlling the longitudinal dynamics of an aircraft using synthetic jet type actuators. Bi-directional changes in the pitching moment over a range of angles of attack are effected by controllable, nominally-symmetric trapped vorticity concentrations on both the suction and pressure surfaces near the trailing edge. Actuation is applied on both surfaces by hybrid actuators that are each comprised of a miniature obstruction integrated with a synthetic jet actuator to manipulate and regulate the vorticity concentrations. In previous work, a simple model was derived from a reduced order vortex model that includes one explicit nonlinear state for fluid variables and can be easily coupled to the rigid body dynamics of an aircraft. This paper further simplifies this model for control design. The control design is based on an output feedback adaptive control methodology that illustrates the effectiveness of using the model for achieving flight control at a higher bandwidth than achievable with typical static actuator assumptions. A unique feature of the control design is that the control variable is a pseudo-control based on regulating a control vortex strength. Wind tunnel experiments on a unique dynamics traverse verify that tracking performance is indeed better than control designs employing standard actuator modeling assumptions. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
AIAA Guidance, Navigation, and Control Conference and Exhibit

Suggestions

Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight
Perçin, Mustafa; de Croon, G. C. H. E.; Remes, B. (IOP Publishing, 2016-06-01)
The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum condi...
Flight test maneuver design and aerodynamic parameter estimation for single use autonomous air vehicles
Vefa Yavuzturk, N.; Topbas, Eren; Yazıcıoğlu, Yiğit (null; 2017-01-01)
In this paper, a maneuver design and aerodynamic parameter estimation procedure is carried out for single use autonomous gliding air vehicles where allowable flight testing time is limited. At first, using the priori aerodynamics of a gliding vehicle, an aerodynamic model has been built and six degree of freedom simulation tool is generated. This priori aerodynamic knowledge is used to design a multi-sine input to excite the system at predetermined flight conditions during flight test. Afterwards, using the...
Vortex Formation and Force Generation Mechanisms of the DelFly II in Hovering Flight
Tenaglia, A; Perçin, Mustafa; Van Oudheusden, Bas W.; Deng, Shuanghou; Remes, Bart (2014-08-12)
This paper addresses the unsteady aerodynamic mechanisms in the hovering flight of the DelFly II flapping-wing Micro Aerial Vehicle (MAV). Stereoscopic Particle Image Velocimetry (Stereo-PIV) were carried out around the wings at a high framing rate. Thrust-force was measured to investigate the relation between the vortex dynamics and the aerodynamic force generation. The results reveal that the Leading-Edge-Vortex (LEV), as well as the high flexibility of the wings, have a major effect on thrust generation....
Structured H-Infinity controller design and analysis for highly maneuverable jet aircraft
Özkan, Salih Volkan; Tekinalp, Ozan; Department of Aerospace Engineering (2022-2-10)
Robust control technique is utilized to develop flight control laws for highly maneuverable aircraft. A structured H-Infinity controller is used to optimize the gains of the proposed control algorithm. For this purpose systune algorithm available in Matlab is employed to successfully obtain the controller gains satisfying selected design requirements. Designed control laws are evaluated according to these requirements and validation of the methodology is presented.
Control allocation for a multi-rotor e-vtol aircraft using blended-inverse
Aksoy, Emre; Yavrucuk, İlkay; Department of Aerospace Engineering (2021-2-25)
In this thesis, the control allocation problem in a flight control system design for a multi-rotor eVTOL (electric Vertical Takeoff and Landing) aircraft is proposed. The vehicle consists of 20 identical rotors that are used as flight control actuators. The dynamic system is a MIMO (Multi Input Multi Output) system with more inputs than outputs, i.e. there are many solutions of the control problem. The objective is to find an efficient and redundant control solution that provides sufficient flight performan...
Citation Formats
J. A. Muse, A. A. Tchieu, A. T. Kutay, R. Chandramohan, A. J. Calise, and A. Leonard, “Vortex model based adaptive flight control using synthetic jets,” AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 0–0, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57043.