Structured H-Infinity controller design and analysis for highly maneuverable jet aircraft

Download
2022-2-10
Özkan, Salih Volkan
Robust control technique is utilized to develop flight control laws for highly maneuverable aircraft. A structured H-Infinity controller is used to optimize the gains of the proposed control algorithm. For this purpose systune algorithm available in Matlab is employed to successfully obtain the controller gains satisfying selected design requirements. Designed control laws are evaluated according to these requirements and validation of the methodology is presented.

Suggestions

Control System Design of a Vertical Take-off and Landing Fixed-Wing UAV
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (2016-05-20)
In this study, design and implementation of control system of a vertical take-off and landing (VTOL) unmanned aerial vechicle (UAV) with level flight capability is considered. The platform structure includes both multirotor and fixed-wing (FW) conventional aircraft control surfaces: therefore named as VTOL-FW. The proposed method includes implementation of multirotor and airplane controllers and design of an algorithm to switch between them in achieving transitions between VTOL and FW flight modes. Thus, VT...
High angle attack maneuvering and stabilization control of aircraft
Ateşoğlu, Özgür; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
In this study, the implementation of modern control techniques, that can be used both for the stable recovery of the aircraft from the undesired high angle of attack flight state (stall) and the agile maneuvering of the aircraft in various air combat or defense missions, are performed. In order to accomplish this task, the thrust vectoring control (TVC) actuation is blended with the conventional aerodynamic controls. The controller design is based on the nonlinear dynamic inversion (NDI) control methodologi...
Design of an autonomous landing control algorithm for a fixed wing UAV
Kargın, Volkan; Yavrucuk, İlkay; Department of Aerospace Engineering (2007)
This thesis concerns with the design and development of automatic flight controller strategies for the autonomous landing of fixed wing unmanned aircraft subject to severe environmental conditions. The Tactical Unmanned Aerial Vehicle (TUAV) designed at the Middle East Technical University (METU) is used as the subject platform. In the first part of this thesis, a dynamic model of the TUAV is developed in FORTRAN environment. The dynamic model is used to establish the stability characteristics of the TUAV. ...
Experimental Investigation of Optimal Gap Distance between Rotors of a Quadrotor UAV
Kaya, Dilber Derya; Kutay, Ali Türker; Tekinalp, Ozan (2017-06-09)
The effect of spacing between the rotors of a quadrotor Unmanned Aerial Vehicle (UAV) in hovering flight is investigated. Experiments are conducted to obtain a mathematical relation between the diameter of the rotor and gap distance between each rotor. Constraints such as the maximum thrust force and minimum energy consumption are imposed. Several rotors having different sizes are tested at various RPMs with a changing gap distances, and total thrust produced by four rotors is measured. The results are give...
Design and analysis of a mode-switching micro unmanned aerial vehicle
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (SAGE Publications, 2016-12-01)
In this study, design and analysis of a mode-switching vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) with level flight capability is considered. The design of the platform includes both multirotor and fixed-wing (FW) conventional airplane structures; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles including post-stall conditions. Trim conditions are obtained by solving constrained optimization problems. Linear analysis techniques are utilized for trim ...
Citation Formats
S. V. Özkan, “Structured H-Infinity controller design and analysis for highly maneuverable jet aircraft,” M.S. - Master of Science, Middle East Technical University, 2022.