Investigation of Compositional, Structural, and Dynamical Changes of Pentylenetetrazol-Induced Seizures on a Rat Brain by FT-IR Spectroscopy

Turker, Sevgi
Severcan, Mete
Severcan, Feride
To accomplish the appropriate treatment strategies of epilepsy action mechanisms underlying epileptic seizures should be lightened. The identification of epileptic seizure-induced alterations on the brain related to their pathologies may provide information for its action mechanism. Therefore, the current study determined molecular consequences of seizures induced by pentylenetetrazol (PTZ), which is a widely used convulsant agent, on rat brain. The rats were administered subconvulsant (25 mg/kg) and convulsant (60 mg/kg) doses of PTZ during a week, and brain tissues were studied by Fourier transform infrared (FT-IR) spectroscopy. Results revealed a decrease in lipid fluidity and lipid and protein content and also the differences in membrane packing by changing the nature of hydrogen bonding as indicated by the C=O, the PO2- symmetric, and asymmetric bands. Monitoring of the olefinic band elicited seizure-induced lipid peroxidation further confirmed by the thiobarbituric acid (TBAR) assay. Additionally, PTZ-induced convulsions led to alterations in protein structures obtained by neural network (NN) predictions like an increase in random coils. On the basis of the spectral changes, treated samples could be successfully differentiated from the controls by cluster analysis. Consequently, the convulsive dose of PTZ caused more significant molecular variations compared to the subconvulsive one. All findings might have an important role in understanding the molecular mechanisms underlying epileptic activities.


In-Depth Method for the Characterization of Glycosylation in Manufactured Recombinant Monoclonal Antibody Drugs
Song, Ting; Özcan Kabasakal, Süreyya; Becker, Alicia; Lebrilla, Carlito B. (American Chemical Society (ACS), 2014-06-17)
The glycosylation in recombinant monoclonal antibody (rMab) drugs is a major concern in the biopharmaceutical industry as it impacts the drugs' many attributes. Characterization is important but complicated by the intricate structures, microheterogeneity, and the limitations of current tools for structural analysis. In this study, we developed a liquid chromatography-mass spectrometry (LC-MS) N-glycan library based on eight commercial rMab drugs. A library of over 70 structures was developed for the rapid c...
High-Throughput Screening and Quantitation of Target Compounds in Biofluids by Coated Blade Spray-Mass Spectrometry
Tascon, Marcos; Gomez-Rios, German Augusto; Reyes-Garces, Nathaly; Poole, Justen; Boyacı, Ezel; Pawliszyn, Janusz (American Chemical Society (ACS), 2017-08-15)
Most contemporary methods of screening and quantitating controlled substances and therapeutic drugs in biofluids typically require laborious, time-consuming, and expensive analytical workflows. In recent years, our group has worked toward developing microextraction (mu e)-mass spectrometry (MS) technologies that merge all of the tedious steps of the classical methods into a simple, efficient, and low-cost methodology. Unquestionably, the automation of these technologies allows for faster sample throughput, ...
Solid Phase Microextraction-Based Miniaturized Probe and Protocol for Extraction of Neurotransmitters from Brains in Vivo
Lendor, Sofia; Hassani, Seyed-Alireza; Boyacı, Ezel; Singh, Varoon; Womelsdorf, Thilo; Pawliszyn, Janusz (American Chemical Society (ACS), 2019-04-02)
Despite the importance of monitoring and correlating neurotransmitter concentrations in the brain with observable behavior and brain areas in which they act, in vivo measurement of multiple neurochemicals in the brain remains a challenge. Here, we propose an alternative solid phase microextraction-based (SPME) chemical biopsy approach as a viable method for acquirement of quantitative information on multiple neurotransmitters by one device within a single sampling event, with multisite measurement capabilit...
Immobilization studies utilizing solid supports for the determination of fructose by dansylaminophenyl boronic acid (DAPB acid) and chromate by diphenylcarbazide (DPC)
Bulut, Mukadder; Volkan, Mürvet; Department of Chemistry (2006)
Immobilization of fluorescent chemosensors and chromogenic reagents on solid supports for developing optical sensors result in improved analytical performance characteristics such as continuous read-out, increased sensitivity, lower reagent consumption and possibility of using the sensor in solvents where the free molecule displays low solubility. The aim of this study is to immobilize dansylaminophenyl boronic acid (DAPB acid) and diphenylcarbazide (DPC) into various solid supports for the determination of...
Technologies for glycomic characterization of biopharmaceutical erythropoietins
Hua, Serenus; Oh, Myung Jin; Özcan Kabasakal, Süreyya; Seo, Young Suk; Grimm, Rudolf; An, Hyun Joo (Elsevier BV, 2015-05-01)
Glycosylation is one of the most critical factors affecting the quality, the safety and the potency of recombinant erythropoietin. Small changes during production can significantly affect glycosylation, and so the potency, of recombinant erythropoietin. Due to patent expirations, we expect biosimilar erythropoietins to play an increasing role in healthcare in coming years. Governmental regulatory agencies and biopharmaceutical companies therefore have an urgent need for reliable methods that can accurately ...
Citation Formats
S. Turker, G. İLBAY, M. Severcan, and F. Severcan, “Investigation of Compositional, Structural, and Dynamical Changes of Pentylenetetrazol-Induced Seizures on a Rat Brain by FT-IR Spectroscopy,” ANALYTICAL CHEMISTRY, pp. 1395–1403, 2014, Accessed: 00, 2020. [Online]. Available: