Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Polymerization of 2-hydroxyethyl acrylate in bulk and solution by chemical initiator and by ATRP method
Date
2005-09-01
Author
Vargun, E
Usanmaz, Ali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
277
views
0
downloads
Cite This
In this study, 2-hydroxyethyl acrylate (HEA) was polymerized to obtain polymers that can be used as hydrogel and copolymerized for biomedical applications. Bulk, solution, and atom transfer radical polymerization (ATRP) techniques at different temperatures were applied. The polymerization in bulk form was carried out in vacuum and in open atmosphere. The polymerization curves showed autoacceleration mechanism and the limiting conversion was 100%. The polymers obtained were insoluable in most common solvents because of high molecular weights and strong intermolecular hydrogen bonding. They absorb more than 30% (w/w) water as hydrogel. To decrease the molecular weight and obtain soluble polymers, HEA was polymerized in solution by ATRP method, which also gave insoluble hydrogel type polymers. The activation energy for bulk polymerization was 155.8 kJ/mol, which is very high for a free radical polymerization. This is due to the high degree of intermolecular hydrogen bonding, which was also supported by FTIR and TGA analysis. The polymers were characterized by FT-IR, DSC, TGA, and H-1 NMR techniques. (c) 2005 Wiley Periodicals, Inc.
Subject Keywords
Organic Chemistry
,
Materials Chemistry
,
Polymers and Plastics
URI
https://hdl.handle.net/11511/57236
Journal
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY
DOI
https://doi.org/10.1002/pola.20867
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Fused structures in the polymer backbone to investigate the photovoltaic and electrochromic properties of donoracceptor-type conjugated polymers
CEVHER, ŞEVKİ CAN; UNLU, Naime Akbasoglu; OZELCAGLAYAN, Ali Can; APAYDIN, Dogukan Hazar; Udum, Yasemin Arslan; Toppare, Levent Kamil; Çırpan, Ali (Wiley, 2013-05-01)
In this study, two new benzotriazole (BTz) and dithienothiophene (DTT) containing conjugated polymers were synthesized. After successful characterizations of the monomers by proton-nuclear magnetic resonance (1H NMR) and carbon-NMR (13C NMR) techniques, poly(4-(dithieno[3, 2-b:2,3-d]thiophen-2-yl)-2-(2-octyldodecyl)-2H-benzo[d][1,2,3] triazole) P1 and poly(4-(5-(dithieno[3,2-b:2,3-d]thiophen-2-yl)thiophen-2-yl)-2-(2-octyldodecyl)-7-(thiophen-2-yl)-2H-benzo[d][1,2,3]triazole) P2 were synthesized via a typica...
Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material
Aydogdu, Ayca; Şümnü, Servet Gülüm; Şahin, Serpil (Elsevier BV, 2019-03-15)
The objective of this study was to encapsulate gallic acid in Hydroxypropyl methylcellulose (HPMC)/poly-ethylene oxide (PEO) blend nanofiber by using electrospinning and examine the usage of nanofibers as active packaging materials. Gallic acid loaded nanofibers showed homogenous morphology. Gallic acid was loaded into nanofibers efficiently and nanofibers showed strong antioxidant activity. As the gallic acid amount increased, the TGA curves had shifted one stage to two stage degradation and degradation te...
ELECTROINITIATED POLYMERIZATION OF ACRYLAMIDE BY DIRECT ELECTRON-TRANSFER
HACIOGLU, B; Akbulut, Ural; Toppare, Levent Kamil (Wiley, 1989-10-01)
Electroinitiated polymerization of acrylamide was carried out in acetonitrile–tetrabutylammonium fluoroborate by electrolytic reduction of monomer. It was shown by cyclic voltammetry that direct electron transfer from the cathode to the monomer can be achieved in this solvent–electrolyte system. Reduction peak potentials measured by cyclic voltammetry indicated that sodium salts will interfere with such a mechanism. Since the reduction peak potential of sodium salt and dimethylformamide are found to be lowe...
Polymerization and characterization of 2-Hydroxyethyl acrylate
Vargün, Elif; Usanmaz, Ali; Department of Polymer Science and Technology (2003)
Poly(2-Hydroxyethyl acrylate), PHEA, is used as hydrophilic polymeric gels which have been studied because of its great importance for agricultural or biomedical applications. Biomedical applications of hydrogels include soft contact lenses, artificial corneas, soft tissue substitutes and burn dressings. In this study, it was aimed to synthesis the polymers with well-defined molecular weights, polydispersities and cahin topologies. Bulk, solution and atom transfer radical polymerization (ATRP) techniques at...
Hydroxyl-Terminated Poly(urethane acrylate) as a Soft Liner in Dental Applications: Synthesis and Characterization
Keskin, Selda; Usanmaz, Ali (Wiley, 2010-07-05)
Hydroxyl-terminated poly(urethane acrylate)s were synthesized for use in biomedical applications. Acrylate end capping via an interesterification reaction was successfully achieved with methacryloyl chloride addition to the hydroxyl ends of the polyurethane at low temperatures. 2,4-Toluene diisocyanate, 1,6-hexane diisocyanate, and methylene diphenyl diisocyanate were used as diisocyanates for urethane synthesis, and they were end-capped with methyl methacrylate and hydroxyethyl methacrylate. The nature of ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Vargun and A. Usanmaz, “Polymerization of 2-hydroxyethyl acrylate in bulk and solution by chemical initiator and by ATRP method,”
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY
, pp. 3957–3965, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57236.