Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Surface Vessel Tracking in Airborne Infrared Imagery
Date
2019-01-01
Author
Cakiroglu, Ahmet
Ulusoy, İlkay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
186
views
0
downloads
Cite This
Visual target tracking has been studied for decades and still remains a challenging problem. Ship tracking on infrared images has numerous challenges compared to conventional target tracking such as fast changing of appearance. Rapid appearance change caused by the manoeuvring movement of the target of image acquiring platform, confusion and occlusion caused by the active countermeasures employed by the target and disguise by cooling systems causes the target tracking algorithms to have low performance. In this work, a convolutional neural network and correlation filter based algorithm which tracks surface vessels on infrared imagery is proposed. Performance of the proposed algorithm is compared against the distinguished, popular target tracking algorithms from the literature. Performances are evaluated on a specially created infrared ship images dataset.
Subject Keywords
Target tracking
,
Infrared tracking
URI
https://hdl.handle.net/11511/57461
DOI
https://doi.org/10.1109/siu.2019.8806375
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Target tracking with correlated measurement noise
Okşar, Yeşim; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2007)
A white Gaussian noise measurement model is widely used in target tracking problem formulation. In practice, the measurement noise may not be white. This phenomenon is due to the scintillation of the target. In many radar systems, the measurement frequency is high enough so that the correlation cannot be ignored without degrading tracking performance. In this thesis, target tracking problem with correlated measurement noise is considered. The correlated measurement noise is modeled by a first-order Markov m...
Random Matrix Based Extended Target Tracking with Orientation: A New Model and Inference
Tuncer, Barkın; Özkan, Emre (2021-02-01)
In this study, we propose a novel extended target tracking algorithm which is capable of representing the extent of dynamic objects as an ellipsoid with a time-varying orientation angle. A diagonal positive semi-definite matrix is defined to model objects' extent within the random matrix framework where the diagonal elements have inverse-Gamma priors. The resulting measurement equation is non-linear in the state variables, and it is not possible to find a closed-form analytical expression for the true poste...
3D Extended Object Tracking Using Recursive Gaussian Processes
Kumru, Murat; Özkan, Emre (2018-07-10)
In this study, we consider the challenging task of tracking dynamic 3D objects with unknown shapes by using sparse point cloud measurements gathered from the surface of the objects. We propose a Gaussian process based algorithm that is capable of tracking the dynamic behavior of the object and learn its shape in 3D simultaneously. Our solution does not require any parametric model assumption for the unknown shape. The shape of the objects is learned online via a Gaussian process. The proposed method can joi...
Target tracking and sensor placement for doppler–only measurements
Ayazgök, Süleyman; Orguner, Umut; Department of Electrical and Electronics Engineering (2015)
This thesis investigates the problems of target tracking and optimal sensor placement with Doppler-only measurements. First, a single point track initialization algorithm proposed in the literature is investigated for Doppler-only tracking. The initialization algorithm is based on separable least squares method and involves a grid-based optimization. Second, particle filters are considered for Doppler-only tracking and they are compared to an extended Kalman filter (EKF). It is shown that a classical bootst...
Extended target tracking using reduced rank gaussian processes
Özcan , Mustafa Buğra; Özkan, Emre; Department of Electrical and Electronics Engineering (2021-2-12)
Conventional tracking algorithms are predominantly based on point target assumption; however, this assumption is challenged as a result of the advents in sensor resolutions. Improvements on processors and rapid advances in sensor capabilities has enabled to the perception of target characteristics beyond the kinematics. Extended target tracking is the ability to learn target shapes that occupy multiple resolution cells and to track the motion of the target in a recursive framework. Gaussian process, a non-p...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Cakiroglu and İ. Ulusoy, “Surface Vessel Tracking in Airborne Infrared Imagery,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57461.