Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Mechanism of formation of biocidal imidazolidin-4-one derivatives: An ab initio density-functional theory
Date
2006-06-01
Author
Akdağ, Akın
Mckee, Michael L.
Worley, S. D.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
N-halamine chemistry has been a research topic of considerable importance in these laboratories for over 2 decades because N-halamine compounds are very useful in preparing biocidal materials. To understand the utility of these compounds, the stabilities and mechanism of halogenation of cyclic N-halamine compounds should be resolved. The important precursor biocidal compound, 2,2,5,5-tetramethylimidazolidin-4-one (TMIO) was considered as a model in this theoretical study. The thermodynamic and kinetic products of monohalogenation were investigated along with tautomerization of TMIO and succinimide theoretically at the level of B3LYP/6-311 + G(2d,p). Solvation effects (water and chloroform) were included using the CPCM solvation model with UAKS cavities. Several mechanisms have been proposed for the chlorine migration from the 3-position (kinetic product) to the 1-position (thermodynamic product) of the TMIO ring. The results are in agreement with experimental NMR data.
Subject Keywords
Physical and Theoretical Chemistry
URI
https://hdl.handle.net/11511/57521
Journal
JOURNAL OF PHYSICAL CHEMISTRY A
DOI
https://doi.org/10.1021/jp060879q
Collections
Department of Chemistry, Article