Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A hybrid augmented ant colony optimization for the multi-trip capacitated arc routing problem under fuzzy demands for urban solid waste management
Date
2020-02-01
Author
Tirkolaee, Erfan Babaee
Mahdavi, Iraj
Esfahani, Mir Mehdi Seyyed
Weber, Gerhard Wilhelm
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Nowadays, urban solid waste management is one of the most crucial activities in municipalities and their affiliated organizations. It includes the processes of collection, transportation and disposal. These major operations require a large amount of resources and investments, which will always be subject to limitations. In this paper, a chance-constrained programming model based on fuzzy credibility theory is proposed for the multi-trip capacitated arc routing problem to cope with the uncertain nature of waste amount generated in urban areas with the aim of total cost minimization. To deal with the complexity of the problem and solve it efficiently, a hybrid augmented ant colony optimization algorithm is developed based on an improved max-min ant system with an innovative probability function and a simulated annealing algorithm. The performance of hybrid augmented ant colony optimization is enhanced by using the Taguchi parameter design method to adjust the parameters' values optimally. The overall efficiency of the algorithm is evaluated against other similar algorithms using well-known benchmarks. Finally, the applicability of the suggested methodology is tested on a real case study with a sensitivity analysis to evolve the managerial insights and decision aids.
Subject Keywords
Environmental Engineering
,
Pollution
URI
https://hdl.handle.net/11511/57552
Journal
WASTE MANAGEMENT & RESEARCH
DOI
https://doi.org/10.1177/0734242x19865782
Collections
Graduate School of Applied Mathematics, Article