Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Beyond symmetry groups: A grouping study on Escher's Euclidean ornaments
Date
2016-01-01
Author
Adanova, V.
Tarı, Zehra Sibel
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
© 2015 Elsevier Inc.From art to science, ornaments constructed by repeating a base motif (tiling) have been a part of human culture. These ornaments exhibit various kinds of symmetries depending on the construction process as well as the symmetries of the base motif. The scientific study of the ornaments is the study of symmetry, i.e., the repetition structure. There is, however, an artistic side of the problem too: intriguing color permutations, clever choices of asymmetric interlocking forms, several symmetry breaking ideas, all that come with the artistic freedom. In this paper, in the context of Escher's Euclidean ornaments, we study ornaments without reference to fixed symmetry groups. We search for emergent categorical relations among collections of tiles. We explore how these relations are affected when new tiles are inserted to the collection. We explore whether it is possible to code symmetry group information implicitly without explicitly extracting the repetition structure, grids and motifs.
Subject Keywords
Content/style
,
Ornaments
,
Symmetry
,
Style based grouping
,
Wallpaper groups
URI
https://hdl.handle.net/11511/57582
Journal
Graphical Models
DOI
https://doi.org/10.1016/j.gmod.2015.09.001
Collections
Department of Computer Engineering, Article