Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computational Design and Analysis of Efficient Couplers for Nano-optical Links
Date
2019-01-01
Author
Altinoklu, A.
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
197
views
0
downloads
Cite This
We present rigorous optimization and design of efficient couplers to improve optical transmission along nanowires. It is well-known that nanowires are excellent tools to transmit electromagnetic power in nano-optical systems, while couplers become inevitable at critical locations, particularly in input/output regions and at corners if nanowires are bended. We use genetic algorithms supported by fast full-wave solutions to efficiently and accurately obtain effective couplers in alternative scenarios. The designed couplers are investigated in detail, such as in terms of grid size and frequency, while we consider various cases of nanowire configurations. Usage of multiple couplers and their integration on the same transmission lines are also studied. The results are interpreted to reach conclusions and guidelines on the design of effective couplers for complex nanowire networks and nano-optical links.
Subject Keywords
Couplers
,
Nanowires
,
Optimization
,
Electromagnetics
,
Density measurement
,
Power system measurements
,
Springs
URI
https://hdl.handle.net/11511/57589
DOI
https://doi.org/10.1109/piers-spring46901.2019.9017864
Conference Name
PhotonIcs and Electromagnetics Research Symposium - Spring (PIERS-Spring)
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Computational Design of Optical Couplers for Bended Nanowire Transmission Lines
Tuncyurek, Yunus Emre; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-07-01)
We present computational analysis, optimization, and design of optical couplers that can be useful to improve the transmission along bended nanowires. After demonstrating the deteriorated energy transmission due to sharp bends, which lead to out-of-phase nanowires and diffraction, we use a rigorous simulation environment to design efficient couplers made of spherical particles. For this purpose, an optimization module based on genetic algorithms is combined with the multilevel fast multipole algorithm, lead...
Design, optimization, and analyses of nano-optical couplers consisting of nanocubes to construct efficient nanowire transmission systems
Altınoklu, Aşkın; Ergül, Özgür Salih (2021-01-01)
We present the design, optimization, and analyses of efficient couplers to construct nano-optical transmission systems involving nanowires. The couplers consist of optimized arrangements of nanocubes and are integrated into critical locations, such as nanowire inputs, corners, and junctions, to improve electromagnetic transmission in accordance with design purposes. Optimization and numerical analyses are performed by employing an efficient simulation environment based on a full-wave solver and genetic algo...
Numerical Investigation of Nano-Cavities for Optimal Power Absorption in Solar Cells
Karaosmanoglu, Bariscan; Topcuoglu, Ulas; Tuygar, Emre; Ergül, Özgür Salih (2018-06-01)
We present a numerical study of nano-cavities used in solar cells for energy harvesting, by employing surface integral equations based on Maxwell's equations in the frequency domain and an efficient solver based on the multilevel fast multipole algorithm (MLFMA). With the three-dimensional modeling of surfaces, we obtain accurate results to evaluate the performances of different structures for improved power absorption in solar cells. This paper includes a brief description of the developed solver and initi...
Design and performance analysis of a pump-turbine system using computational fluid dynamics
Yıldız, Mehmet; Albayrak, Kahraman; Çelebioğlu, Kutay; Department of Mechanical Engineering (2011)
In this thesis, a parametric methodology is investigated to design a Pump-Turbine system using Computational Fluid Dynamics ( CFD ). The parts of Pump-Turbine are created parametrically according to the experience curves and theoretical design methods. Then, these parts are modified to obtain 500 kW turbine working as a pump with 28.15 meters head. The final design of Pump-Turbine parts are obtained by adjusting parameters according to the results of the CFD simulations. The designed parts of the Pump-Turbi...
INVESTIGATION AND OPTIMIZATION OF WINGLETS FOR HAWT ROTOR BLADES
Elfarra, Monier A.; Akmandor, I. Sinan; Sezer Uzol, Nilay (2011-03-25)
The main purpose of this paper is to optimize winglet geometry by using CFD with Genetic Algorithm and study its effects on power production. For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier-Stokes equations are solved and different turbulence models including the Spalart-Allmaras, k-epsilon Launder-Sharma, k-epsilon Yang-Shih and SST k-omega models are used and tested. The results of the power curve and the pressure distribution at dif...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Altinoklu and Ö. S. Ergül, “Computational Design and Analysis of Efficient Couplers for Nano-optical Links,” presented at the PhotonIcs and Electromagnetics Research Symposium - Spring (PIERS-Spring), Rome, ITALY, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57589.