Purification, characterization, and identification of a novel bifunctional catalase-phenol oxidase from Scytalidium thermophilum

Kocabas, Didem Sutay
Bakir, Ufuk
Phillips, Simon E. V.
McPherson, Michael J.
Ögel, Zümrüt Begüm
A novel bifunctional catalase with an additional phenol oxidase activity was isolated from a thermophilic fungus, Scytalidium thermophilum. This extracellular enzyme was purified ca. 10-fold with 46% yield and was biochemically characterized. The enzyme contains heme and has a molecular weight of 320 kDa with four 80 kDa subunits and an isoelectric point of 5.0. Catalase and phenol oxidase activities were most stable at pH 7.0. The activation energies of catalase and phenol oxidase activities of the enzyme were found to be 2.7 +/- 0.2 and 10.1 +/- 0.4 kcal/mol, respectively. The pure enzyme can oxidize o-diphenols such as catechol, caffeic acid, and L-DOPA in the absence of hydrogen peroxide and the highest oxidase activity is observed against catechol. No activity is detected against tyrosine and common laccase substrates such as ABTS and syringaldazine with the exception of weak activity with p-hydroquinone. Common catechol oxidase inhibitors, salicylhydroxamic acid and p-coumaric acid, inhibit the oxidase activity. Catechol oxidation activity was also detected in three other catalases tested, from Aspergillus niger, human erythrocyte, and bovine liver, suggesting that this dual catalase-phenol oxidase activity may be a common feature of catalases.


Oxidation of phenolic compounds by the bifunctional catalase-phenol oxidase (CATPO) from Scytalidium thermophilum
Avci, Gulden Koclar; Çoruh, Nursen; Bolukbasi, Ufuk; Ogel, Zumrut B. (Springer Science and Business Media LLC, 2013-01-01)
The thermophilic fungus Scytalidium thermophilum produces a novel bifunctional catalase with an additional phenol oxidase activity (CATPO); however, its phenol oxidation spectrum is not known. Here, 14 phenolic compounds were selected as substrates, among which (+)-catechin, catechol, caffeic acid, and chlorogenic acid yielded distinct oxidation products examined by reversed-phase HPLC chromatography method. Characterization of the products by LC-ESI/MS and UV-vis spectroscopy suggests the formation of dime...
Purification, characterization, crystallization and preliminary x-ray structure determination of scytalidium thermophilum bifunctional catalase and identification of its catechol oxidase activity
Sutay, Didem; Bakır, Ufuk; Department of Chemical Engineering (2007)
In this study, the aim was identification and classification of the enzyme having phenol oxidase activity produced by a thermophilic fungus, Scytalidium thermophilum. For this purpose, enzyme production, purification, biochemical characterization and structural analysis by X-ray crystallography studies have been performed. At the beginning of the research, this enzyme was considered as a phenol oxidase and analyzed accordingly. However, during purification, amino acid sequencing and structural studies, the ...
Production, properties and application to biocatalysis of a novel extracellular alkaline phenol oxidase from the thermophilic fungus Scytalidium thermophilum
Ögel, Zümrüt Begüm; Yuzugullu, Y.; Mete, S.; Bakir, U.; Kaptan, Y.; Sutay, D.; Demir, Ayhan Sıtkı (Springer Science and Business Media LLC, 2006-08-01)
Scytalidium thermophilum produces an extracellular phenol oxidase on glucose-containing medium. Certain phenolic acids, specifically gallic acid and tannic acid, induce the expression of the enzyme. Production at 45 degrees C in batch cultures is growth-associated and is enhanced in the presence of 160 mu M CuSO4.5 H2O and 3 mM gallic acid. The highest enzyme activity is observed at pH 7.5 and 65 degrees C, on catechol. When incubated for 1 h at pH 7 and pH 8, 95% and 86% of the activity is retained. Thermo...
Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-beta-1,3-glucanase
Izgu, F; Altinbay, D (Informa UK Limited, 2004-03-01)
K5-type yeast killer protein in the culture supernatant of Pichia anomala NCYC 434 cells was concentrated by ultrafiltration and purified to homogenity by ion-exchange chromatography with a POROS HQ/M column followed by gel filtration with a TSK G2000SW column. The protein migrated as a single band on discontinous gradient SDS-PAGE and had a molecular mass of 49000 Da. The pI value of the K5-type killer protein was measured at pH 3.7 by high voltage vertical gel electrofocusing. The result of an enzyme immu...
Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae.
Şeker, Tamay; Nielsen, J (Springer Science and Business Media LLC, 2005-04-01)
The mevalonate pathway plays an important role in providing the cell with a number of essential precursors for the synthesis of biomass constituents. With respect to their chemical structure, the metabolites of this pathway can be divided into two groups: acyl esters [acetoacetyl CoA, acetyl CoA, hydroxymethylglutaryl (HMG) CoA] and phosphorylated metabolites (isopentenyl pyrophosphate, dimethylallyl pyrophosphate, geranyl pyrophosphate, farnesyl pyrophosphate). In this study, we developed a method for the ...
Citation Formats
D. S. Kocabas, U. Bakir, S. E. V. Phillips, M. J. McPherson, and Z. B. Ögel, “Purification, characterization, and identification of a novel bifunctional catalase-phenol oxidase from Scytalidium thermophilum,” APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, pp. 407–415, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57604.