Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modification of the extended messinger model for mixed phase icing and industrial applications with TAICE
Date
2017-01-01
Author
Ayan, Erdem
Özgen, Serkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
265
views
0
downloads
Cite This
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Computational studies have been performed in order to predict mixed phase ice accretion on aircraft components. In-house developed TAICE tool has been used in this study. Previously, TAICE was already validated for icing cases due to water droplets only. In addition, in the framework of High Altitude Ice Crystals (HAIC) FP7 European project, mixed phase ice accretion prediction capability has been added to TAICE. Up to now, Turkish Aerospace Industries (TAI) has implemented models related to ice crystal accretion calculation. Drag coefficient prediction, heat transfer & phase change, impingement, erosion and accretion models are among these models. Moreover, extended Messinger model has been modified for mixed phase icing conditions and are used in this study. Validations of the generated tool have been performed before by using COX and NASA-NRC wind tunnel results. Numerical comparison results on representative pitot probe and engine inlet are given to show capability of the tool.
URI
https://hdl.handle.net/11511/57614
DOI
https://doi.org/10.2514/6.2017-3759
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Analysis of effects of different diffusion models in hypersonic flow regimes
Gur, H. Berk; Eyi, Sinan (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Hypersonic flows become popular due to its use in space explorations and military applications. It occurs normally, when a space craft re-enter to the atmosphere. Space crafts are exposed to high temperatures and high pressures because of Earth’s atmosphere and gravity. In addition in high temperatures, gases tend to react with each other. These reactions also have effects on space craft’s surface. In order to calculat...
Implementation of ball-center spring analogy mesh deformation technique with CFD design optimization
Yang, Yosheph; Özgen, Serkan (2015-01-01)
© 2015, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Mesh deformation technique plays an important role in several numerical simulations and applications including design optimization. This paper aims to implement the developed unstructured mesh deformation technique for CFD Design Optimization around 2-D Airfoils. During the optimization procedure, the newly deformed mesh is generated by using the updated Ball-Center Spring analogy mesh deformation technique. The compar...
Aerodynamic optimization of wing-body configuration using discrete adjoint method
Yıldırım, Ahmet; Eyi, Sinan (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.The gradient based sensitivities required by design optimization are obtained by three different methods based on three dimensional Euler equations. Finite difference, Direct and Adjoint methods are used to compute objective sensitivities. A cell centered, upwind based finite volume method is implemented to discretize the Euler equations. The flow solution is obtained by preconditioned matrix-free Newton-GMRES algorith...
Experimental design and statistical modeling methodology for wind tunnel aerodynamics of an agile missile to improve the simulation accuracy and performance
Savas, Ozgun; Topbas, Eren; Unal, Kenan; Karaca, H. Deniz; Kutay, Ali Türker (2018-01-01)
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Wind tunnel testing is an essential procedure to investigate the aerodynamics forces and moments. In this paper, a methodology is presented to perform such test in an efficient way. Experimental design process is carried out before the testing in order to cover the flight regime as much as possible with the least possible number of tests. After the determination of the test matrix and conducting the wind-on tests, the ...
Analysis of hypersonic flow using three dimensional Navier-Stokes equations
Özgün, Muharrem; Eyi, Sinan (2014-01-01)
© 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.The purpose of this study is to develop an accurate and efficient CFD code that can be used in hypersonic flows. The flow analysis is based on the three dimensional Navier-Stokes equations. These equations are solved by using Newton’s method. The analytical method is used to calculate the Jacobian matrix. Flow parameters and convective heat transfer are analyzed on Apollo AS-202 Command Module. Especially, temperature...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Ayan and S. Özgen, “Modification of the extended messinger model for mixed phase icing and industrial applications with TAICE,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57614.