Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Aerodynamic optimization of wing-body configuration using discrete adjoint method
Date
2017-01-01
Author
Yıldırım, Ahmet
Eyi, Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.The gradient based sensitivities required by design optimization are obtained by three different methods based on three dimensional Euler equations. Finite difference, Direct and Adjoint methods are used to compute objective sensitivities. A cell centered, upwind based finite volume method is implemented to discretize the Euler equations. The flow solution is obtained by preconditioned matrix-free Newton-GMRES algorithm. The required derivatives for Adjoint and Direct methods are obtained by analytical derivation of discrete flow equations. Resulted linear systems are solved by PARDISO solver. Design variables are selected as Non-Uniform Rational B-Spline (NURBS) curve and surface control points while Radial Basis Function (RBF) is used in volume mesh deformation.
URI
https://hdl.handle.net/11511/69458
DOI
https://doi.org/10.2514/6.2017-3262
Collections
Department of Aerospace Engineering, Conference / Seminar