Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Growth of branched gold nanoparticles on solid surfaces and their use as surface-enhanced Raman scattering substrates
Download
index.pdf
Date
2015-01-01
Author
Nalbant Esentürk, Emren
Coskun, S.
Kozanoglu, D.
Ertaş, Gülay
Ünalan, Hüsnü Emrah
Nalbant Esentürk, Emren
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
127
downloads
Cite This
Branched gold (Au) nanoparticles (NPs) were synthesized directly on surfaces of three different supports (silicon, glass, indium tin oxide (ITO)) by following a "seed-mediated" method. Growth of the nanostructures in high yield and all with branched morphology was achieved on all surfaces. Nanostructures with desired characteristics were synthesized by determining the optimum seed size (8 nm Au nanospheres) and pH (3.00) of the growth solution. The Au NPs synthesized under these conditions have branched morphologies with average sizes of ca. 450 nm and are well dispersed on the support surface. Surface-enhanced Raman scattering (SERS) spectroscopy studies were performed using Rhodamine 6G (R6G) as a probe molecule. The results revealed strong SERS activity of the synthesized Au NPs for the detection of R6G in concentrations as low as 1 nM with an enhancement factor (EF) estimated as greater than 8 orders of magnitude.
Subject Keywords
Seed-mediated growth
,
High-yield synthesis
,
Metal nanoparticles
,
Vapor-deposition
,
Crystal-growth
,
Nanorods
,
Spectroscopy
,
Nanowires
,
Resonance
,
Size
URI
https://hdl.handle.net/11511/57675
Journal
RSC ADVANCES
DOI
https://doi.org/10.1039/c5ra18570j
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities
Elcı, Aylin; Demırtas, Ozge; Öztürk, İbrahim Murat; Bek, Alpan; Nalbant Esentürk, Emren (2018-12-01)
Tin oxide-coated gold nanostar hybrid nanostructures are prepared by first synthesizing gold nanostars (ca. 400nm), then introducing Na2SnO3 precursor followed by its hydrolysis and formation of a tin oxide layer on nanoparticle surface. The synthesized hybrid structures have been characterized by combination of UV-Vis spectroscopy, transmission electron microscope (TEM), energy-dispersive X-ray studies, scanning electron microscope (SEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectr...
Growth of nano-graphene on SrTiO3 (110) substrates by chemical vapour deposition
KARAMAT, SHUMAİLA; Celik, K.; Oral, Ahmet (2017-10-01)
Transfer of graphene from metal catalyst to dielectrics is a complicated procedure which affects the quality of graphene. In the present work, direct growth of graphene was established on strontium titanate (SrTiO3) substrates with the means of chemical vapour deposition (CVD). The graphene growth on catalyst free dielectric substrates were carried out for 3, 4 and 7 h at 1000 degrees C. Raman spectrum showed D, G and 2D peaks of graphene for the samples. Scanning electron microscope (SEM) was used to get a...
Growth and characterization of indium rich indium-gallium-nitride solar cell epitaxial structures by metal organic chemical vapor deposition
Çakmak, Hüseyin; Ünalan, Hüsnü Emrah; Turan, Raşit; Department of Micro and Nanotechnology (2012)
The purpose of this study is to develop a technology for indium (In) rich indium gallium nitride (InGaN) solar cell epitaxial structures through metal organic chemical vapor deposition (MOCVD) method. InxGa1-xN solar cell structures have potential to cover 90% of the solar spectrum by varying In composition in the active region of the solar cell, where bandgaps of indium nitride (InN) and gallium nitride (GaN) are 0.7 eV and 3.4 eV, respectively. Photovoltaic devices that have a bandgap larger than 2.0 eV g...
Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs
Yıldırım, Özlem Altıntaş; Liu, Yuzi; Petford-Long, Amanda K. (Elsevier BV, 2015-11-15)
Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped t...
Synthesis of Photocatalytic Titanium Dioxide Nanopowders Using Different Acid Catalysers
Mohammed, Ahmed Hafedh Mohammed; Park, Jongee; Öztürk, Abdullah (2018-07-17)
Photocatalytic titanium dioxide (TiO2) nanoparticles were synthesized via acid assisted sol-gel process. The effects of different acids namely; acetic acid, hydrochloric acid, and nitric acid on the formation of TiO2 nanoparticles and their photocatalytic properties were investigated. XRD, SEM, and UV-Vis spectrophotometer analyses were performed to examine the physical and chemical characteristics of the nano powders. The results showed that only anatase phase of TiO2nanoparticleswith different crystallite...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Nalbant Esentürk, S. Coskun, D. Kozanoglu, G. Ertaş, H. E. Ünalan, and E. Nalbant Esentürk, “Growth of branched gold nanoparticles on solid surfaces and their use as surface-enhanced Raman scattering substrates,”
RSC ADVANCES
, pp. 101656–101663, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57675.