Monte Carlo computer simulation of copper clusters

Erkoç, Şakir
Shaltaf, R
We have investigated the structural stability and energetics for small copper clusters, Cu-n (n=3,...,55) by using a Monte Carlo technique at room temperature (T=300 K). In the simulation we have adopted two approaches; one of them was optimizing the cluster from a random configuration as a starting point, and the other was optimizing the cluster by adding one atom randomly to an optimized geometry. The empirical potential-energy function proposed by Erkoc has been used, which contains two-body atomic interactions. It has been found that the fivefold symmetry appears in all the clusters with the number of atoms n greater than or equal to 7, and the icosahedral structure dominates in the clusters with the number of atoms n greater than or equal to 13. [S1050-2947(99)01810-7].


Density functional theory study on the structural properties and energetics of Zn(m)Te(n) microclusters
Pekoez, Rengin; Erkoç, Şakir (Elsevier BV, 2008-08-01)
Density functional theory calculations with B3LYP exchange-correlation functional using CEP-121G basis set have been carried out in order to elucidate the structural properties and energetics of neutral zinc telluride clusters, Zn(m)Te(n)(m + n <= 6), in their ground states. The geometric structures, binding energies, vibrational frequencies and infrared intensities, Mulliken charges on atoms, HOMO and LUMO energies, the most possible dissociation channels and their corresponding energies for the clusters h...
Katırcıoğlu, Şenay (1989-03-01)
We have investigated the energetics and the structural stability of gallium microclusters including 3–7 atoms. A molecular-dynamics technique is employed in the simulation. The potential energy function used in the calculations includes two- and three-body interactions which are represented by Lennard-Jones and Axilrod-Teller type functions, respectively. It was found that the planar configurations are energetically more favorable for all the clusters studied.
Theoretical investigation of charge accumulation layer on the Bi-induced InAs(111)-(2 x 2) surface
Ozkaya, S.; Usanmaz, D.; ÇAKMAK, MELEK; Alkan, B.; Ellialtıoğlu, Süleyman Şinasi (AIP Publishing, 2014-04-28)
Based on pseudopotential method and density functional theory, we have investigated the stability, atomic geometry, and detailed electronic structures for Bi adsorbates on the InAs(111)-(2 x 2) surface with three different sites: (i) T-4 (Bi trimer centered on T-4 site), (ii) H-3 (Bi trimer centered on H-3 site), and (iii) T-4-H-3 (which is formed by trimers with opposite orientations: one centered on a T-4 site and the other on a H-3). Our total energy calculations suggest that adsorption on the T-4-H-3 si...
Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical &ITM(2)AB&IT (M = &ITTi&IT, &ITZr&IT, & A = &ITAl&IT, &ITGa&IT, &ITIn&IT) compounds
SÜRÜCÜ, GÖKHAN (2018-01-01)
The structural, electronic, anisotropic elastic, and lattice dynamical properties of the M(2)AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds belong to the family of MAX phases have been investigated by accomplishing the first principles density functional theory (DFT) calculations with utilizing the generalized-gradient approximation (GGA). Structural parameters, formation enthalpies, and X-ray diffraction patterns have been calculated for all compounds. Electronic band structure and corresponding density of ...
Development of atomic force microscopy system and kelvin probe microscopy system for use in semiconductor nanocrystal characterization
Bostancı, Umut; Turan, Raşit; Department of Physics (2007)
Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM) are two surface characterization methods suitable for semiconductor nanocrystal applications. In this thesis work, an AFM system with KPM capability was developed and implemented. It was observed that, the effect of electrostatic interaction of the probe cantilever with the sample can be significantly reduced by using higher order resonant modes for Kelvin force detection. Germanium nanocrystals were grown on silicon substrate using different g...
Citation Formats
Ş. Erkoç and R. Shaltaf, “Monte Carlo computer simulation of copper clusters,” PHYSICAL REVIEW A, pp. 3053–3057, 1999, Accessed: 00, 2020. [Online]. Available: