Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Physical Properties and Cure Characteristics of Natural Rubber/Nanoclay Composites with Two Different Compatibilizers
Date
2011-08-05
Author
Dogan, Mehmet
Oral, Demet Dengiz
Yilmaz, Betul
Savu, Melih
Karahan, Selcuk
Bayramlı, Erdal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
150
views
0
downloads
Cite This
The effects of epoxidized natural rubber (ENR) and maleic anhydride-grafted polybutadiene (PB-g-MA) as compatibilizers to rubber formulations with and without organo-modified layered silicates are investigated. The physical properties and curing characteristics of composites are studied by moving die rheometer, rubber process analyzer, tensile, tear, and hardness testing. The state of organoclay intercalation was determined by X-ray diffraction method. The addition of compatibilizers, especially ENR 50, results in further intercalation or exfoliation of the organoclay that increased the clay dispersion in the rubber matrix. ENR 50 with organo-modified clay improves the physical properties and changes the curing profile. The addition of PB-g-MA without organoclay increases the tensile strength (sigma(max)) by increasing the stock viscosity of the rubber compound. Interestingly, simultaneous increase in hardness and sigma(max) is achieved in the presence of both compatibilizers, a characteristic that is difficult to achieve and sometimes required in rubber processing. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 1530-1535, 2011
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Surfaces, Coatings and Films
,
Polymers and Plastics
URI
https://hdl.handle.net/11511/57777
Journal
JOURNAL OF APPLIED POLYMER SCIENCE
DOI
https://doi.org/10.1002/app.33690
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Mechanical properties of soft liner-poly(methyl methacrylate)-based denture material
Usanmaz, Ali; Latifoglu, MA; Dogan, A; Akkas, N; Yetmez, M (Wiley, 2002-07-18)
In this study, the mechanical properties of two different permanent soft lining materials and their bonding to poly(methyl methacrylate) (PMMA) were compared. Both of the soft liners were heat-cured commercial materials. The polymerization was carried out by conventional methods suggested by manufacturer, and the curing was done at the temperature of boiling water for 5, 15, 25, and 35 min. The sample groups were tested in the computer-aided tensile-testing machine at a rate of 2 mm/min. The slow rate helps...
Preparation and Characterization of Low Density Polyethylene/Ethylene Methyl Acrylate Glycidyl Methacrylate/Organoclay Nanocomposites
Coskunses, Fatma Isik; Yılmazer, Ülkü (Wiley, 2011-06-05)
The effects of organoclay type, compatibilizer, and the addition order of components during melt-blending process on the morphology and thermal, mechanical, and flow properties of ternary nanocomposites based on low-density polyethylene (LDPE) were investigated. As a compatibilizer, ethylene/methyl acrylate/glycidyl methacrylate (E-MA-GMA), as organoclays Cloisites (R) 15A, 25A, and 30B were used. All samples were prepared by a corotating twin screw extruder, followed by injection molding. The highest incre...
Characterization and Electrical Conductivity of Poly(ethylene glycol)/Polyacrylonitrile/Multiwalled Carbon Nanotube Composites
Aqeel, Salem M.; Kucukyavuz, Zuhal (Wiley, 2011-01-05)
Polymer blends based on poly(ethylene glycol), polyacrylonitrile, and multiwalled carbon nanotubes (MWNTs) were prepared by the solvent cast technique from the dispersion of the MWNTs in the concentration range 0-3.45 wt %. The interaction of the MWNTs with the polymer blend was confirmed by a Fourier transform infrared (FTIR) spectroscopy study. The thermal properties of the polymer blend with the MWNTs were carried out by means of differential scanning calorimetry (DSC). It was evident from DSC that the p...
Synthesis and characterization of epoxy based nanocomposites
Basara, G; Yılmazer, Ülkü; Bayram, Göknur (Wiley, 2005-11-01)
Epoxy-clay nanocomposites were synthesized to examine the effects of the content and type of different clays on the structure and mechanical properties of the nanocomposites. Diglycidyl ether of bisphenol-A (epoxy) was reinforced by 0.5-11 wt % natural (Cloisite Na+) and organically modified (Cloisite 3013) types of montmorillonite. SEM results showed that as the clay content increased, larger agglomerates of clay were present. Nano-composites with Cloisite 30B exhibited better dispersion and a lower degree...
Flow induced polymer-filler interactions: Bound polymer properties and bound polymer-free polymer phase separation and subsequent phase inversion during mixing
Akay, G. (Wiley, 1990-11)
The irreversible absorption of macromolecules on to solid filler particles during mixing in the melt is investigated. The molecular weight and concentration dependence of the absorbed layer thickness are evaluated and the chemical and morphological nature of the irreversibly absorbed polymer (bound polymer) are determined. It is found that the thickness of the bound polymer is not only dependent on the filler concentration but also dependent on polymer molecular weight. Bound polymer in high density polyeth...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dogan, D. D. Oral, B. Yilmaz, M. Savu, S. Karahan, and E. Bayramlı, “Physical Properties and Cure Characteristics of Natural Rubber/Nanoclay Composites with Two Different Compatibilizers,”
JOURNAL OF APPLIED POLYMER SCIENCE
, pp. 1530–1535, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57777.