Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Extended kalman filter based robust altitude controller for sea skimming missiles
Date
2016-01-01
Author
Dülgar, Özgün
Gezer, Rüştü Berk
Kutay, Ali Türker
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
239
views
0
downloads
Cite This
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.A sea skimming missile is needed to be flown above mean sea level as low as it can, in order to decrease detectability; so that, survivability of the missile against counter attacks of the target ships is maximized. On the other hand, flying at very low height is a tough task under disturbances due to sea waves and measurement errors of various sensors used in height control loop. Thus, a robust altitude control system design is the main challenge among the other control algorithms for a sea skimming missile. In this paper, extended Kalman filter based altitude controller method is proposed and compared with the existing designs in literature. Simulation results under a few scenarios, in which sensor errors, severe sea conditions, and limited computing power are taken into account, are shared. Results show that the extended Kalman filter based altitude controller has satisfactory performance against many real world issues.
Subject Keywords
Guidance, navigation, and control
URI
https://hdl.handle.net/11511/57936
DOI
https://doi.org/10.2514/6.2016-1876
Conference Name
AIAA Guidance, Navigation, and Control Conference
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Adaptive model predictive control of uncertain systems with input constraints
Yayla, Metehan; Kutay, Ali Türker (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.This paper introduces a new hybrid adaptive model predictive control approach to control of uncertain dynamical systems where the matched uncertainty can be linearly parameterized by known basis functions. Introduced control framework respects the actuator position limit and actuator rate limit. Initially, an integration method in adaptive control is employed to identify the matched uncertainty in conjunction with Pseu...
A modeling and simulation tool for safe store separation envelope generation using monte carlo simulations
Unal, Kenan; Baran, Özgür Uğraş (2018-01-01)
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.When an air released store is developed or undergoes substantial updates, integration to aircraft is realized through a certification process. One of the most important steps of the certification process is to determine safe separation envelope. For this process there are several approaches: full scale flight tests, computational fluid dynamics (CFD) simulation techniques and wind tunnel captive trajectory tests. Separ...
An adaptive flight controller design for a tilt-prop fixed wing uav for all flight modes
Yayla, Metehan; Kutay, Ali Türker (2020-01-01)
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.In this study, we propose an autonomous flight control strategy (which is valid for all flight modes including vertical flight, hover, and level flight) for a vertical takeoff and landing capable, tilt-prop, fixed wing, tricopter unmanned aerial vehicle. In the inner loop of proposed hierarchical architecture, desired control forces and moments are generated using adaptive control theory, and these forces and moments a...
Adaptive roll control of guided munitions with state independent uncertainty parameterization
Ovec, Naz T.; Kutay, Ali Türker (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Guided munitions are air-to-air or air-to-surface weapons which have enhanced target hit capabilities with laser seekers or similar guidance utilities. The additional components enhance the target hit capability of the munition significantly but they bring along some aerodynamic challenges as well. The cross-coupled interactions are triggered with the sharp maneuvers and the stabilization of the roll channel is aggrava...
A multi-fidelity, multi-disciplinary analysis and optimization framework for the design of morphing UAV wings
Ciarella, Andrea; Tsotskas, Christos; Hahn, Marco; Werter, Noud P. M.; De Breuker, Roeland; Beaverstock, Chris S.; Friswell, Michael I.; Yang, Yosheph; Özgen, Serkan; Antoniadis, Antonios; Tsoutsanis, Panagiotis; Drikakis, Dimitris (null; 2015-01-01)
© 2015 American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.A framework for the design and optimization of a morphing wing is presented. It allows the user to simplify the design process of a morphing UAV wing with a simple and effective interface with the possibility to easily switch between flight phases and morphing concepts. It consists of two main solvers: a high-fidelity CFD module for detailed RANS simulation and a fast low-fidelity module that solves the aeroelastic prob...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Dülgar, R. B. Gezer, and A. T. Kutay, “Extended kalman filter based robust altitude controller for sea skimming missiles,” presented at the AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57936.