TENSILE, FLEXURAL AND IMPACT PROPERTIES OF A THERMOPLASTIC MATRIX REINFORCED BY GLASS-FIBER AND GLASS BEAD HYBRIDS

1992-01-01
Yılmazer, Ülkü
The tensile and flexural properties, together with the unnotched and notched impact strengths of acrylonitrile butadiene styrene (ABS), glass bead (GB) and glass fiber (GF) ternary composites have been studied. The tensile strengths of the hybrid composites were predicted, from a theory formulated in this study, by using the strengths of the ABS/GB and ABS/GF composites alone. The addition of even a small quantity of glass fiber to ABS or ABS/GB composites changes the mode of deformation from one which shows vacuole growth and crazing to brittle failure. Thus, the elongation at break, the area under the stress/strain curve and the impact energy decrease sharply with the introduction of glass fiber to ABS or ABS/GB composites.
COMPOSITES SCIENCE AND TECHNOLOGY

Suggestions

Stress redistribution around fiber breaks in unidirectional steel fiber composites considering the nonlinear material behavior
SABUNCUOĞLU, BARIŞ; Mutlu, Çağlar; Kadıoğlu, Fevzi Suat; Swolfs, Yentl (Elsevier BV, 2020-05-01)
The use of steel fibers as reinforcement in polymer composites is recently increasing thanks to their ductility, high stiffness and wide range of diameters. Unlike carbon and glass fibers, steel fibers often end up with a non-circular cross-section due to their manufacturing technology. This may influence the stress redistribution around fiber breaks, which is important in longitudinal tensile failure of unidirectional composites. A parametric study was performed by using 3D finite element models with rando...
Nanoclay assisted strengthening of the fiber/matrix interface in functionally filled polyamide 6 composites
Isitman, Nihat Ali; AYKOL, Muratahan; Kaynak, Cevdet (Elsevier BV, 2010-08-01)
This study describes the contribution of a nano-filler, i.e. an organically modified layered silicate, in respect of the fiber/matrix interfacial shear strength (IFSS) of a short glass fiber reinforced and functionally filled polyamide 6, given an exfoliated nanocomposite morphology. Apparent IFSS values are determined using a continuum micromechanical method. Polymer chains in the nanoconfined environment of an exfoliated clay nanocomposite are found to crystallize preferentially in the form of a specific ...
Design of fiber-reinforced composite pressure vessels under various loading conditions
Levend, P; Katirci, N (Elsevier BV, 2002-10-01)
An analytical procedure is developed to design and predict the behavior of fiber reinforced composite pressure vessels. The classical lamination theory and generalized plane strain model is used in the formulation of the elasticity problem. Internal pressure, axial force and body force due to rotation in addition to temperature and moisture variation throughout the body are considered. Some 3D failure theories are applied to obtain the optimum values for the winding angle, burst pressure, maximum axial forc...
ZnO Nanorods as Antireflective Coatings for Industrial-Scale Single-Crystalline Silicon Solar Cells
AURANG, Pantea; Demircioglu, Olgu; ES, FIRAT; Turan, Raşit; Ünalan, Hüsnü Emrah (Wiley, 2013-04-01)
In this work, both planar and textured, industrial scale (156mmx156mm) single-crystalline silicon (Si) solar cells have been fabricated using zinc oxide (ZnO) nanorods as antireflection coating (ARC). ZnO nanorods were grown in a few minutes via hydrothermal method within a commercially available microwave oven. Relative improvement in excess of 65% in the reflectivity was observed for both planar and textured Si surfaces. Through ZnO nanorods, effective lifetime (eff) measurements were presented to investi...
Axisymmetric crack problem for a hollow cylinder imbedded in a dissimilar medium
Kadıoğlu, Fevzi Suat (Elsevier BV, 2005-05-01)
The analytical solution for the linear elastic problem of flat annular crack in a transversely isotropic hollow cylinder imbedded in a transversely isotropic medium is considered. The hollow cylinder is assumed to be perfectly bonded to the surrounding medium. This structure, which can represent a cylindrical coating-substrate system, is subjected to uniform crack surface pressure. Because of the geometry and the loading, the problem is axisymmetric. The z = 0 plane on which the crack lies, is also a plane ...
Citation Formats
Ü. Yılmazer, “TENSILE, FLEXURAL AND IMPACT PROPERTIES OF A THERMOPLASTIC MATRIX REINFORCED BY GLASS-FIBER AND GLASS BEAD HYBRIDS,” COMPOSITES SCIENCE AND TECHNOLOGY, pp. 119–125, 1992, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57978.