Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Comparison of Natural Halloysite With Synthetic Carbon Nanotubes in Poly(lactic acid) Based Composites
Date
2017-11-01
Author
Erpek, Canan Esma Yeniova
ÖZKOÇ, GÜRALP
Yılmazer, Ülkü
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
340
views
0
downloads
Cite This
The objective of this study is to compare the mechanical properties, structure and degradability of the nanocomposites prepared with tubular nanofillers, halloysite (HNT) and carbon nanotube (CNT) in poly(lactic acid) (PLA), and thermoplastic polyurethane (TPU) toughened PLA (T-PLA) matrices. In the PLA matrix, CNT increased, whereas HNT decreased the tensile strength with increasing filler content. Also, the elongation at break and impact strength decreased with increasing CNT content, but these properties were relatively unchanged with increasing HNT content. However, when (TPU) was used as an impact modifier-compatibilizer, addition of HNT further increased the impact strength and the elongation at break of the matrix, since short and straight HNT fibers were pulled out from the extensible, toughened matrix. The long and curvy CNT fillers always caused brittle fracture and affected the impact strength and elongation at break in a negative manner as the CNT content was increased. Both types of fillers did not significantly influence the degradation of PLA or toughened PLA matrices. (C) 2015 Society of Plastics Engineers
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/57980
Journal
POLYMER COMPOSITES
DOI
https://doi.org/10.1002/pc.23816
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Kinetics of polyurethane formation between glycidyl azide polymer and a triisocyanate
Keskin, S; Özkar, Saim (Wiley, 2001-07-25)
Kinetics of the polyurethane formation between glycidyl azide polymer (GAP) and a polyisocyanate, Desmodur N-100, were studied in the bulk state by using quantitative FTIR spectroscopy. The reaction was followed by monitoring the change in intensity of the absorption band at 2270 cm-l for NCO stretching in the IR spectrum, and was shown to obey second-order kinetics up to 50% conversion. The activation parameters were obtained from the evaluation of kinetic data at different temperatures in the range of 50-...
Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants
Selim, K; Özkar, Saim; Yılmaz, Levent (Wiley, 2000-07-18)
Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were used to investigate the thermal behavior of glycidyl azide polymer (GAP) and GAP-based binders, which are of potential interest for the development of high-performance energetic propellants. The glass transition temperature (T-g) and decomposition temperature (T-d) of pure GAP were found to be -45 and 242 degrees C, respectively. The energy released during decomposition (Delta H-d) was measured as 485 cal/g. The effect of th...
Synthesis, electrochromic characterization and solar cell application of thiophene bearing alternating copolymers with azobenzene and coumarin subunits
Kalay, Hüseyin; Yiğit, Deniz; Hizalan, Gonul; Güllü, Mustafa; Depci, Tolga; Çırpan, Ali; Toppare, Levent Kamil; Hacioglu, Serife O. (Informa UK Limited, 2020-08-01)
In this study, azobenzene and coumarin functionalized thiophene comprising two copolymers (poly (4-((3"'-hexyl-[2,2 ':5 ',2 '':5 '',2"'-tetrathiophene] - 3 '-yl)methoxy) - 2H-chromen-2-one (P1) and poly (1-(4-((4"'-hexyl-[2,2 ': 5 ', 2 '': 5 '', 2"' - tetrathiophene] - 3 '-yl) methoxy) phenyl) -2-phenyldiazene) (P2)), were designed and synthesized according to the donor-acceptor (D-A) approach to investigate their electrochemical, optical and photovoltaic behaviors. Among the various copolymerization method...
Characterization and Electrical Conductivity of Poly(ethylene glycol)/Polyacrylonitrile/Multiwalled Carbon Nanotube Composites
Aqeel, Salem M.; Kucukyavuz, Zuhal (Wiley, 2011-01-05)
Polymer blends based on poly(ethylene glycol), polyacrylonitrile, and multiwalled carbon nanotubes (MWNTs) were prepared by the solvent cast technique from the dispersion of the MWNTs in the concentration range 0-3.45 wt %. The interaction of the MWNTs with the polymer blend was confirmed by a Fourier transform infrared (FTIR) spectroscopy study. The thermal properties of the polymer blend with the MWNTs were carried out by means of differential scanning calorimetry (DSC). It was evident from DSC that the p...
Comparison of Polyamide 66-Organoclay Binary and Ternary Nanocomposites
Mert, Miray; Yılmazer, Ülkü (Wiley, 2009-09-01)
Polyamide 66-Lotader (R) 2210 blends (95/5 w/w), polyamide 66-Cloisite (R) 15A binary nanocomposites (98/2 w/w), and polyamide 66-Lotader (R) 2210-Cloisite (R) 15A ternary nanocomposites (93/5/2 w/w) were prepared by twin-screw extrusion, and the changes in mechanical properties, morphology, and flow properties of the materials prepared by different mixing sequences were investigated in this study. Lotader (R) 2210, which is a random terpolymer of ethylene, butyl acrylate, and maleic anhydride, was used as ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. E. Y. Erpek, G. ÖZKOÇ, and Ü. Yılmazer, “Comparison of Natural Halloysite With Synthetic Carbon Nanotubes in Poly(lactic acid) Based Composites,”
POLYMER COMPOSITES
, pp. 2337–2346, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57980.