Comparison of Natural Halloysite With Synthetic Carbon Nanotubes in Poly(lactic acid) Based Composites

2017-11-01
Erpek, Canan Esma Yeniova
ÖZKOÇ, GÜRALP
Yılmazer, Ülkü
The objective of this study is to compare the mechanical properties, structure and degradability of the nanocomposites prepared with tubular nanofillers, halloysite (HNT) and carbon nanotube (CNT) in poly(lactic acid) (PLA), and thermoplastic polyurethane (TPU) toughened PLA (T-PLA) matrices. In the PLA matrix, CNT increased, whereas HNT decreased the tensile strength with increasing filler content. Also, the elongation at break and impact strength decreased with increasing CNT content, but these properties were relatively unchanged with increasing HNT content. However, when (TPU) was used as an impact modifier-compatibilizer, addition of HNT further increased the impact strength and the elongation at break of the matrix, since short and straight HNT fibers were pulled out from the extensible, toughened matrix. The long and curvy CNT fillers always caused brittle fracture and affected the impact strength and elongation at break in a negative manner as the CNT content was increased. Both types of fillers did not significantly influence the degradation of PLA or toughened PLA matrices. (C) 2015 Society of Plastics Engineers
POLYMER COMPOSITES

Suggestions

Comparative study on mechanical, thermal, viscoelastic and rheological properties of vulcanised EPDM rubber
Çavdar, Şeyma; Ozdemir, T.; Usanmaz, Ali (Informa UK Limited, 2010-07-01)
In this study, mechanical, thermal and rheological properties of vulcanised ethylene propylene diene monomer (EPDM) rubber containing different amounts of vulcanising agent, filler, paraffinic oil and stearic acid were compared. Moreover, reaction rate constant of the curing reaction has been calculated from the results of the rheological tests, and relative change of rate constant with the change of additives was studied by a new method. Thermal gravimetric analysis with in situ Fourier transform infrared ...
Influences of liquid elastomer additive on the behavior of short glass fiber reinforced epoxy
Arikan, A; Kaynak, Cevdet; Tincer, T (Wiley, 2002-10-01)
In this study, improvements in mechanical and thermal behavior of short glass fiber (GF) reinforced diglycidyl ether of bisphenol-A (DGEBA) based epoxy with hydroxyl terminated polybutadiene (HTPB) modification have been studied. A silane coupling agent (SCA) with a rubber reactive group was also used to improve the interfacial adhesion between glass fibers and an epoxy matrix. 10, 20, and 30 wt% GF reinforced composite specimens were prepared with and without silane coupling agent treatment of fibers and a...
Impact modified polyamide-6/organoclay nanocomposites: Processing and characterization
Isik, Isil; YILMAZER, ÜLKÜ; Bayram, Göknur (Wiley, 2008-02-01)
The effects of melt state compounding of ethylene-butyl acrylate-maleic anhydride (E-BA-MAH) terpolymer and/or three types of organoclays (Cloisitel(R) 15A, 25A, and 3013) on thermal and mechanical properties and morphology of polyamide-6 are investigated. E-BA-MAH formed spherical domains in the materials to which it is added, and increased the impact strength, whereas the organoclays decreased the impact strength. In general, the organoclays increased the tensile strength (except for Cloisite 15A), Young'...
Studies on the modification of interphase/interfaces by use of plasma in certain polymer composite systems
Akovali, G; Dilsiz, N (Wiley, 1996-04-01)
Calcium carbonate and carbon fiber surfaces were modified by use of a series of plasma polymers at different selected plasma conditions, and the effect of surface modification, mainly on the mechanical properties of composite systems prepared, was investigated. The matrices for the composite systems employed were polypropylene and epoxy, for the chalk and C fiber, respectively. Mechanical and thermal studies and scanning electron microscopy (SEM) pictures revealed that inclusion surfaces, being independent ...
Kinetics of polyurethane formation between glycidyl azide polymer and a triisocyanate
Keskin, S; Özkar, Saim (Wiley, 2001-07-25)
Kinetics of the polyurethane formation between glycidyl azide polymer (GAP) and a polyisocyanate, Desmodur N-100, were studied in the bulk state by using quantitative FTIR spectroscopy. The reaction was followed by monitoring the change in intensity of the absorption band at 2270 cm-l for NCO stretching in the IR spectrum, and was shown to obey second-order kinetics up to 50% conversion. The activation parameters were obtained from the evaluation of kinetic data at different temperatures in the range of 50-...
Citation Formats
C. E. Y. Erpek, G. ÖZKOÇ, and Ü. Yılmazer, “Comparison of Natural Halloysite With Synthetic Carbon Nanotubes in Poly(lactic acid) Based Composites,” POLYMER COMPOSITES, pp. 2337–2346, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57980.