Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films
Date
2014-12-01
Author
Kuru, Yener
Welzel, Udo
Mittemeijer, Eric J.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin (2)psi plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin (2)psi plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined. (c) 2014 AIP Publishing LLC.
URI
https://hdl.handle.net/11511/58039
Journal
APPLIED PHYSICS LETTERS
DOI
https://doi.org/10.1063/1.4902940
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Image-based extraction of material reflectance properties of a 3D rigid object
Erdem, ME; Erdem, IA; Yilmaz, UG; Atalay, Mehmet Volkan (2004-01-01)
In this study, an appearance reconstruction method based on extraction of material reflectance properties of a three-dimensional (3D) object from its two-dimensional (2D) images is explained. One of the main advantages of this system is that the reconstructed object can be rendered in real-time with photorealistic quality in varying illumination conditions. The reflectance of the object is decomposed into diffuse and specular components. While the diffuse component is stored in a global texture, the specula...
Image-based extraction of material reflectance properties of a 3D object
Erdem, Mehmet Erkut; Atalay, Mehmet Volkan; Department of Computer Engineering (2003)
In this study, an appearance reconstruction method based on extraction of material re?ectance properties of a three-dimensional (3D) object from its twodimensional (2D) images is explained. One of the main advantages of this system is that the reconstructed object can be rendered in real-time with photorealistic quality in varying illumination conditions. Bidirectional Reflectance Distribution Functions (BRDFs) are used in representing the reflectance of the object. The reflectance of the object is decompos...
Statistical analysis of second-order relations of 3D structures
Kalkan, Sinan; Wörgötter, Florentin; Kruger, Norbert (2007-03-08)
Algorithmic 3D reconstruction methods like stereopsis or structure from motion fail to extract depth at homogeneous image structures where the human visual system succeeds and is able to estimate depth. In this paper, using chromatic 3D range data, we analyze in which way depth in homogeneous structures is related to the depth at the bounding edges. For this, we first extract the local 3D structure of regularly sampled points, and then, analyze the coplanarity relation between these local 3D structures. ...
3d face representation and recognition using spherical harmonics
Tunçer, Fahri; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2008)
In this study, a 3D face representation and recognition method based on spherical harmonics expansion is proposed. The input data to the method is range image of the face. This data is called 2.5 dimensional. Input faces are manually marked on the two eyes, nose and chin points. In two dimensions, using the marker points, the human face is modeled as two concentric half ellipses for the selection of region of interest. These marker points are also used in three dimensions to register the faces so that the n...
Nonlinear free vibration of double walled carbon nanotubes by using describing function method with multiple trial functions
Ciğeroğlu, Ender (2012-09-01)
In this paper, nonlinear free vibration of double walled carbon nanotubes (DWCNTs) embedded in an elastic medium with geometric nonlinearity and interlayer van der Waals force nonlinearity are studied. The motion of the DWCNT is represented by multiple eigenfunctions of the linear system which are referred as trial functions. Describing function method (DFM) is employed in order to represent the nonlinear forces as a multiplication of a nonlinear stiffness matrix and a displacement vector, which made it pos...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Kuru, U. Welzel, and E. J. Mittemeijer, “Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films,”
APPLIED PHYSICS LETTERS
, pp. 0–0, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/58039.