Forced Vibration Testing and Seismic Fragility Assessment of Instrumented Structures (FORAGAINST)

The objectives of this proposed research are to perform forced vibration tests on the following reinforced concrete structures, which are permanently instrumented for recording their dynamic responses in the case of future earthquakes in Turkey: a four-story dormitory building in Bolu, a four-story office building in Istanbul, a five-story hospital building in Antakya, a three-story school building in Antakya, and a four-story university building in Izmir, and to derive seismic fragilities for these structures to evaluate their seismic vulnerability. The structural dynamic properties identified from the forced vibration tests will be used in validating or calibrating the-state-of-the-art finite element models of these structures. These structural models will then be used in developing probabilistic seismic risk assessment tools in the form of fragility curves for these permanently instrumented structures. The end-product of this study, the seismic fragilities, will serve the building owners and local authorities in pre-earthquake planning to mitigate probable losses and in post-earthquake planning to develop emergency response and recovery strategies in earthquake prone regions of Turkey.


Guidelines for structural health monitoring systems on tall buildings and a case study
Gümüş, Oğuzhan; Çelik, Ozan Cem; Department of Civil Engineering (2021-2-15)
The new Turkish Building Earthquake Code requires real-time monitoring of the structural response of buildings of Earthquake Design Class 1 and 2 that are taller than 105 m. Structural health monitoring (SHM) systems on tall buildings have to comply with the SHM Guidelines by the Disaster and Emergency Management Presidency of Turkey, developed as part of two research projects that were undertaken at METU and Bogazici University. Two tall buildings in Izmir and Istanbul, respectively, were instrumented as c...
Budak, Erhan; Çelik, Ozan Cem; Sucuoğlu, Haluk; Department of Civil Engineering (2022-9-02)
Seismic performance of a 253 m tall reinforced concrete core wall building in Istanbul, designed according to performance-based seismic design principles, was assessed to determine the response parameters that control the serviceability, safety and collapse performance limit states. An ambient vibration test of the building was performed to identify its dynamic properties, including the damping properties for service loads. A three- dimensional linear elastic finite element structural model of the building ...
PAÇARIZI, FURKAN; Çelik, Ozan Cem; Department of Civil Engineering (2022-11)
The expected seismic performance of existing buildings during future earthquakes is always a concern for public administrations in pre- and post-earthquake planning as well as for general public. Seismic risk of these buildings, whether they will fulfill different performance-based design objectives when subjected to earthquake ground motions of different intensities, has to be evaluated. Such an evaluation for an existing building requires an accurate finite element model of the building. This study ...
Çelik, Ozan Cem (2017-05-12)
This paper presents a sequence of forced and ambient vibration tests performed on a six-story precast concrete building prior to any non-structural elements in place. The building is 20.2 m tall and 53.2 m by 15.8 m in plan. In forced vibration testing, the building is excited along its short and long axes, respectively, by a fifth-floor level vibration generator with a known sinusoidal force. Sweeping the vibration generator frequency from 0.5 to 9.5 Hz, structural vibrations are recorded by a dense networ...
Numerical simulation of dynamic shear wall tests: A benchmark study
Kazaz, I; Yakut, Ahmet; Gulkan, P (2006-03-01)
This article presents the numerical simulation of a 1/3-scale, 5-story reinforced concrete load bearing structural wall model subjected to seismic excitations in the context of IAEA benchmark shaking table experiment conducted in laboratories of CEA in Saclay, France. A series of non-linear time history analyses were performed to simulate the damage experienced and response quantities measured for the specimen tested on a shaking table. The mock-up was subjected to a series of artificial and natural earthqu...
Citation Formats
O. C. Çelik, “Forced Vibration Testing and Seismic Fragility Assessment of Instrumented Structures (FORAGAINST),” 2016. Accessed: 00, 2020. [Online]. Available: