Forced Vibration Testing and Seismic Fragility Assessment of Instrumented Structures (FORAGAINST)

2016-2-07
The objectives of this proposed research are to perform forced vibration tests on the following reinforced concrete structures, which are permanently instrumented for recording their dynamic responses in the case of future earthquakes in Turkey: a four-story dormitory building in Bolu, a four-story office building in Istanbul, a five-story hospital building in Antakya, a three-story school building in Antakya, and a four-story university building in Izmir, and to derive seismic fragilities for these structures to evaluate their seismic vulnerability. The structural dynamic properties identified from the forced vibration tests will be used in validating or calibrating the-state-of-the-art finite element models of these structures. These structural models will then be used in developing probabilistic seismic risk assessment tools in the form of fragility curves for these permanently instrumented structures. The end-product of this study, the seismic fragilities, will serve the building owners and local authorities in pre-earthquake planning to mitigate probable losses and in post-earthquake planning to develop emergency response and recovery strategies in earthquake prone regions of Turkey.

Suggestions

Guidelines for structural health monitoring systems on tall buildings and a case study
Gümüş, Oğuzhan; Çelik, Ozan Cem; Department of Civil Engineering (2021-2-15)
The new Turkish Building Earthquake Code requires real-time monitoring of the structural response of buildings of Earthquake Design Class 1 and 2 that are taller than 105 m. Structural health monitoring (SHM) systems on tall buildings have to comply with the SHM Guidelines by the Disaster and Emergency Management Presidency of Turkey, developed as part of two research projects that were undertaken at METU and Bogazici University. Two tall buildings in Izmir and Istanbul, respectively, were instrumented as c...
FORCED AND AMBIENT VIBRATION TESTS OF A SIX-STORY PRECAST CONCRETE BUILDING
Çelik, Ozan Cem (2017-05-12)
This paper presents a sequence of forced and ambient vibration tests performed on a six-story precast concrete building prior to any non-structural elements in place. The building is 20.2 m tall and 53.2 m by 15.8 m in plan. In forced vibration testing, the building is excited along its short and long axes, respectively, by a fifth-floor level vibration generator with a known sinusoidal force. Sweeping the vibration generator frequency from 0.5 to 9.5 Hz, structural vibrations are recorded by a dense networ...
Seismic vulnerability of masonry structures in Turkey
Ceran, Hasan Burak; Erberik, Murat Altuğ; Department of Civil Engineering (2010)
This study focuses on the evaluation of seismic safety of masonry buildings in Turkey by using fragility curves. Fragility curves for masonry buildings are generated by two behavior modes for load bearing walls: in-plane and out-of-plane. By considering the previous research and site investigations, four major parameters have been used in order to classify masonry buildings with in-plane behavior mode. These are number of stories, strength of load-bearing wall material, regularity in plan and the arrangemen...
Numerical simulation of dynamic shear wall tests: A benchmark study
Kazaz, I; Yakut, Ahmet; Gulkan, P (2006-03-01)
This article presents the numerical simulation of a 1/3-scale, 5-story reinforced concrete load bearing structural wall model subjected to seismic excitations in the context of IAEA benchmark shaking table experiment conducted in laboratories of CEA in Saclay, France. A series of non-linear time history analyses were performed to simulate the damage experienced and response quantities measured for the specimen tested on a shaking table. The mock-up was subjected to a series of artificial and natural earthqu...
Seismic Response Analysis and Optimum Design Of A Concave Ball Support İsolated System for A Three Story Concrete Structure
Kaplan, Halit; Dölen, Melik (2003-10-10)
This paper investigates the seismic response and optimum design of a base isolation system for earthquake protection of structures. The system incorporates spherical supports for the base, a specially designed spring-cam system to keep the base rigidly supported under normal conditions and to allow it to move for the duration of the earthquake under the constraint of a spring with optimized stiffness characteristics. A single degree of freedom structure was considered to investigate the feasibility of the c...
Citation Formats
O. C. Çelik, “Forced Vibration Testing and Seismic Fragility Assessment of Instrumented Structures (FORAGAINST),” 2016. Accessed: 00, 2020. [Online]. Available: https://cordis.europa.eu/project/id/268428.