Risk Mitigation for Earthquakes and Landslides (LESSLOSS)

Earthquake and landslide risk is a public safety issue that requires appropriate mitigation measures and means to protect citizens, property, infrastructure and the built cultural heritage. Mitigating this risk requires integrated and coordinated action that embraces a wide range of organisations and disciplines. For this reason, the LESSLOSS IP is formulated by a large number of European Centres of excellence in earthquake and geotechnical engineering integrating in the traditional fields of engineers and earth scientists some expertise of social scientists, economists, urban planners and information technologists. The LESSLOSS project addresses natural disasters, risk and impact assessment, natural hazard monitoring, mapping and management strategies, improved disaster preparedness and mitigation, development of advanced methods for risk assessment, methods of appraising environmental quality and relevant pre-normative research. In order for the multi-disciplinary S&T ingredients of the project to be tackled in an efficient and productive manner, the research programme has been split into three distinct areas: physical environment, urban areas and infrastructures. For each one of this areas four main types of transversal fields have been identified as fundamental and capable of producing permanent effects on risk mitigation: (i) instrumentation and monitoring, (ii) methods and technologies to reduce vulnerability, (iii) innovative approaches for design/assessment and (iv) disaster scenarios and loss modelling. Within this general framework, specific objectives will be pursued, such as the development of innovative methods and approaches to design and assessment of structures and earth slopes for both short- and long-term implementation, the development of advanced monitoring techniques and devices, and the development, manufacturing and testing of innovative isolating and dissipating seismic devices.


Seismic vulnerabilities and risks for urban mitigation planning in Turkey
Sönmez Saner, Tuğçe; Ersoy, Melih; Balamir, Murat; Department of City and Regional Planning (2013)
Chronic seismic hazards and resulting secondary impacts as natural conditions of the country, and loss of robust building and prudent settlement practices as aggravated by rapid population growth make cities the most vulnerable geographical and social entities in Turkey. In contrast, Turkish disaster policy is solely focused on post-disaster issues and no incentives or provision exist to encourage risk analysis or risk mitigation approaches, despite current international efforts. For the development of risk...
Risk assessment and pricing of natural hazards earthquake case
Kestel, Sevtap Ayşe (null; 2015-10-16)
The potential impacts of natural hazards are enormous. In such catastrophes the economies and human lives are exposed to unpredictable losses. Probabilistic modeling of such hazards require long term historical information which enables researchers to determine the potential risk for certain periods. However, even though its increasing trend in the frequency of such events, the factors influencing the magnitude of the losses are diverse and many. Earthquakes are the most severe one as its occurrence and sev...
Seismic strengthening of RC structures with exterior shear walls
KAPLAN, HASAN; Yilmaz, Salih; Cetinkaya, Nihat; Atimtay, Ergin (2011-02-01)
Vulnerable buildings and their rehabilitation are important problems for earthquake regions. In recent decades the goal of building rehabilitation and strengthening has gained research attention and numerous techniques have been developed to achieve this. However, most of these strengthening techniques disturb the occupants, who must vacate the building during renovation. In this study, a new strengthening alternative for RC structures, namely exterior shear walls, has been experimentally investigated under...
Ground motion simulations based on regional input parameters and their impact on insurance premiums: Bursa case
Ünal, Barış; Askan Gündoğan, Ayşegül; Kestel, Sevtap Ayşe; Department of Earthquake Studies (2015)
Determination of earthquake parameters are required for earthquake resistant design and retrofitting of exsisting structures. There are not many options to obtain earthquake data for regions with no or sparce earthquake recordings. Even though some methods are aplicable to these regions they generate only peak ground motion parameters. For cases that require the full ground motion simulations are necessary. Simulations can also be used for gaining knowledge about source, path and site effects. In this study...
Probabilistic seismic hazard assessment for earthquake induced landslides
Balal, Onur; Gülerce, Zeynep; Department of Civil Engineering (2013)
Earthquake-induced slope instability is one of the major sources of earthquake hazards in near fault regions. Simplified tools, such as Newmark’s Sliding Block (NSB) Analysis are widely used to represent the stability of a slope under earthquake shaking. The outcome of this analogy is the slope displacement where larger displacement values indicate higher seismic slope instability risk. Recent studies in the literature propose empirical models between the slope displacement and single or multiple ground mot...
Citation Formats
H. Polat, “Risk Mitigation for Earthquakes and Landslides (LESSLOSS),” 2007. Accessed: 00, 2020. [Online]. Available: https://cordis.europa.eu/project/id/505448.