Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The effect of fractures on the steam-assisted gravity drainage process
Date
2004-11-01
Author
Bağcı, Ali Suat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
219
views
0
downloads
Cite This
This study presents an experimental investigation of the effect of fractures and well configurations on the steam-assisted gravity drainage (SAGD) process in a three-dimensional model, using 12.4degreesAPI gravity crude oil. A total of eight runs were conducted, using a 30 cm x 30 cm x 10 cm rectangular-shaped box model. Temperature distributions were observed using 25 thermocouples. Three different well configurations were investigated-a horizontal injection and production well pair, a vertical injection-vertical production well pair, and a vertical injection -horizontal production well pair-with and without fractures that provided a vertical path through the horizontal producer. The influence of fracture distribution on the steam-oil ratio (SOR) and oil recovery was analyzed using the horizontal well pair scheme, a vertical injection-horizontal production well pair, and a vertical injection and vertical production well scheme. The experimental results indicated that vertical fractures improved SAGD. Maximum oil recovery was observed during the horizontal injection-horizontal production well scheme with a fractured model, because of the favorable steam-chamber geometry. Runs showed that the location of the fractures affects the performance of the process. During the early stages of the runs, the fractured model gave significantly higher SORs than those observed in the uniform-permeability reservoir.
Subject Keywords
Fuel Technology
,
Energy Engineering and Power Technology
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/62289
Journal
ENERGY & FUELS
DOI
https://doi.org/10.1021/ef0301553
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Investigation of combustion process through horizontal wells
Bağcı, Ali Suat (Informa UK Limited, 2005-04-15)
Dry combustion was accomplished with the application of different horizontal well configurations in a 3-D model using high gravity oil. Seven experiments using Raman crude oil (18 degrees API) were carried out in the laboratory with a 40 cm square 3-D model having a thickness of 15 cm. Five different well configurations were applied to recover Raman crude oil. The model was packed by tamping a mixture of crushed limestone, water and crude oil. A total of 36 thermocouples were used at the top, center and bot...
Mathematical modeling of steam-assisted gravity drainage
Akın, Serhat (Society of Petroleum Engineers (SPE), 2005-01-01)
A mathematical model for gravity drainage in heavy-oil reservoirs and tar sands during steam injection in linear geometry is proposed. The mathematical model is based on the experimental observations that the steam-zone shape is an inverted triangle with the vertex fixed at the bottom production well. Both temperature and asphaltene content dependence on the viscosity of the drained heavy oil are considered. The developed model has been validated with experimental data presented in the literature. The heavy...
A Mechanistic Model for Predicting Frictional Pressure Losses for Newtonian Fluids in Concentric Annulus
SORGUN, MEHMET; Ozbayoglu, M. E. (Informa UK Limited, 2010-01-01)
A mathematical model is introduced estimating the frictional pressure losses of Newtonian fluids flowing through a concentric annulus. A computer code is developed for the proposed model. Also, extensive experiments with water have been conducted at Middle East Technical University, Petroleum and Natural Gas Engineering Department Flow Loop and recorded pressure drop within the test section for various flow rates. The performance of the proposed model is compared with computational fluid dynamics (CFD) soft...
An investigation of polymerflooding in limestone reservoirs with a bottom water zone
Bağcı, Ali Suat; Hodaie, H (Informa UK Limited, 2003-03-01)
The effects of polymers on waterflooding of a limestone reservoir with or without a bottom water zone, as well as the effect of vertical and horizontal production wells on oil recovery, have been investigated in laboratory models. Sixteen core flood displacement tests were conducted to study the effect of relative oil-water layer thickness, polymer slug size, and well configuration in a production port. A qualitative comparison was made to show the difference between waterflooding and polymer-augmented wate...
A stochastic approach in reserve estimation
Kök, Mustafa Verşan (Informa UK Limited, 2006-12-01)
Geostatistics and more especially stochastic modeling of reservoir heterogeneities are being increasingly considered by reservoir analysts and engineers for their potential in generating more accurate reservoir models together with usable measures of spatial uncertainty. Geostatistics provides a probabilistic framework and a toolbox for data analysis with an early integration of information. The uncertainty about the spatial distribution of critical reservoir parameters is modeled and transferred all the wa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. S. Bağcı, “The effect of fractures on the steam-assisted gravity drainage process,”
ENERGY & FUELS
, pp. 1656–1664, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62289.