Performance evaluation of a wind driven DOIG using a hybrid model

1998-06-01
Cadirci, I
Ermiş, Muammer
This paper presents the performance analysis of a wind driven double output induction generator (DOIG) operating at varying shaft speeds. A periodic transient state analysis of DOIG equipped with two controlled converters is carried out using a hybrid induction machine model. It is shown that practical aspects of converters such as overlap and harmonics reduce the power output of the DOIG system and limit the operating shaft speed range, especially in the subsynchronous region near the synchronous speed. Validity of the mathematical model used in the analyses and the corresponding computer simulation results are verified experimentally.
IEEE TRANSACTIONS ON ENERGY CONVERSION

Suggestions

Performance comparison of inverter control techniques used for the supply of a linear PM synchronous actuator
Ben Salem, I.; Ouni, L. El Amraoui; Gillon, F.; Benrejeb, M.; Brochet, P. (2011-09-10)
This paper presents performance comparison of three inverter control techniques. These techniques are respectively hysteresis control, MAIM control and direct voltage control (DVC). They are applied for a PM Linear Tubular Synchronous Actuator (PAITI,SA) drive fed, using a three phase voltage source inverter (VSI). This VSI is working with constant switching time intervals as in the standard torque control DTC system.
Comparison of Inverter Topologies Suited for Integrated Modular Motor Drive Applications
Ugur, Mesut; Sarac, Hakan; Keysan, Ozan (2018-08-30)
In this paper, various inverter topologies are compared for integrated modular motor drive (IMMD) applications. Two-level voltage source inverter (2L-VSI), three level voltage source inverter (3L-VSI) and series/parallel combinations of these topologies with system level modularity are compared in terms of voltage and current harmonic spectrum, passive component sizes and motor drive efficiency. New generation wide band-gap GaN power semiconductor devices are utilized in modular topologies and they are comp...
Optimization of AA-Battery Sized Electromagnetic Energy Harvesters: Reducing the Resonance Frequency Using a Non-Magnetic Inertial Mass
Yasar, Oguz; Ulusan, Hasan; Zorlu, Ozge; Sardan-Sukas, Ozlem; Külah, Haluk (2018-06-01)
This paper presents an optimization study for a miniature electromagnetic energy harvester, by incorporating a non-magnetic inertial mass (tungsten) along with the axially oriented moving magnets. The aim is to decrease the operation frequency and increase the output power of the harvester with the usage of higher density material and larger magnetic flux density. Dimensions of the magnets are optimized according to the harvester dimensions and magnetic flux gradients. Additionally, coil length, width, resi...
Speed Control by Sliding Mode of Synchronous Motor
Bahi, T.; Lachtar, S.; Soufi, Y.; Lckhchine, S.; Merabet, H. (2011-09-10)
This paper presents the results of a simulation for synchronous motor speed control using a Direct Torque Control (DTC). This technique was object of a deep study for synchronous motor drives instead of precise closed loop speed control. However, this technique presents some problems such as, high influence of the motor parameters. The sliding mode controller is a model-based approach used to improve the robustness of the control law despite this influence and to illustrate the good performance of this tech...
ELECTRIC DRIVE FOR FLYWHEEL ENERGY-STORAGE
TRIPATHY, SC (Elsevier BV, 1994-02-01)
This paper presents the results of experimental work on flywheel energy storage systems for city buses. An efficient electronic hardware scheme is used to start the flywheel and traction machines. This scheme has been designed, fabricated and tested in our laboratory. A low frequency a.c. has been derived from an inverter fed from a three-phase uncontrolled rectifier to start the commutatorless d.c. motors. Commutation is achieved by using a capacitor and two auxiliary thyristors, whose ratings could be a f...
Citation Formats
I. Cadirci and M. Ermiş, “Performance evaluation of a wind driven DOIG using a hybrid model,” IEEE TRANSACTIONS ON ENERGY CONVERSION, pp. 148–155, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62605.