Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Consistent Source-to-Site Distance Metrics in Ground-Motion Prediction Equations and Seismic Source Models for PSHA
Date
2012-02-01
Author
Bommer, Julian J.
Akkar, Dede Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
296
views
0
downloads
Cite This
Most modern ground-motion prediction equations (GMPE) use definitions of the source-to-site distance that reflect the dimensions of the fault rupture for larger earthquakes rather than using point-source measures relative to the epicenter or hypocenter. This is a positive development since it more realistically reflects the fact that energy is released from the crust around the entire fault rupture during a large earthquake. However, seismic source configurations defined for probabilistic seismic hazard analysis (PSHA) almost invariably include areas of distributed point-source seismicity in addition to linear fault sources, particularly in regions of lower earthquake activity. Herein, two GMPEs are derived from the same dataset to demonstrate the errors that can result from combining point-source simulations and extended-source distance metrics. The case is made for all ground-motion model developers to consider deriving pairs of equations, one using an extended-source distance metric, the other a point-source measure. [DOI:10.1193/1.3672994]
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Geophysics
URI
https://hdl.handle.net/11511/62667
Journal
EARTHQUAKE SPECTRA
DOI
https://doi.org/10.1193/1.3672994
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Empirical attenuation equations for vertical ground motion in Turkey
Kalkan, E; Gulkan, P (SAGE Publications, 2004-08-01)
In the aftermath of two destructive urban earthquakes in 1999 in Turkey, empirical models of strong motion attenuation relationships that have been previously developed for North American and European earthquakes have been utilized in a number of national seismic hazard studies.. However, comparison of empirical evidence and estimates present significant differences. For that reason, a data set created from a suite of 100 vertical strong ground motion records from 47 national earthquakes that occurred betwe...
Ground Motion Prediction Equations for the Vertical Ground Motion Component Based on the NGA-W2 Database
Gülerce, Zeynep; Abrahamson, Norman A.; Silva, Walter J. (SAGE Publications, 2017-05-01)
Empirical ground motion models for the vertical component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0-8.0, distances of 0-300 km, and spectral periods of 0-10 s. The model input parameters are the same as used by Abrahamson et al. (2014) except that the nonlinear site response and depth to bedrock effects are evaluated but found to be insignificant. Regional differences in large distance attenuation and ...
Spatial sensitivity of seismic hazard results to different background seismic activity and temporal earthquake occurrence models
Yilmaz, Nazan; Yücemen, Mehmet Semih (Elsevier BV, 2011-07-01)
Spatial sensitivity of seismic hazard results to different models with respect to background seismic activity and earthquake occurrence in time is investigated. For the contribution of background seismic activity to seismic hazard, background area source with uniform seismicity and spatially smoothed seismicity models are taken into consideration. For the contribution of faults, through characteristic earthquakes, both the memoryless Poisson and the time dependent renewal models are utilized. A case study, ...
Seismic Risk Assessment of Masonry Buildings in Istanbul for Effective Risk Mitigation
Erberik, Murat Altuğ (SAGE Publications, 2010-11-01)
Unreinforced and non-engineered masonry buildings are highly vulnerable to seismic hazard and constitute a significant percentage of earthquake losses, including both casualties and economic losses. This study presents an engineering application on seismic safety assessment of unreinforced masonry (URM) buildings in Istanbul, Turkey, a metropolitan city under very high seismic risk. Nearly 20,000 masonry buildings were examined through a two-stage assessment procedure in order to identify the addresses of t...
Site-Specific Design Spectra for Vertical Ground Motion
Gülerce, Zeynep (SAGE Publications, 2011-11-01)
This paper contains ground-motion prediction equations (GMPEs) for the vertical-to-horizontal spectral acceleration (V/H) ratio, and the methods for constructing vertical design spectra that are consistent with the probabilistic seismic hazard assessment results for the horizontal ground motion component. The GMPEs for V/H ratio consistent with the horizontal GMPE of Abrahamson and Silva (2008) are derived using the Pacific Earthquake Engineering Research Center's Next Generation of Ground-Motion Attenuatio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. J. Bommer and D. S. Akkar, “Consistent Source-to-Site Distance Metrics in Ground-Motion Prediction Equations and Seismic Source Models for PSHA,”
EARTHQUAKE SPECTRA
, pp. 1–15, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62667.