Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Empirical attenuation equations for vertical ground motion in Turkey
Date
2004-08-01
Author
Kalkan, E
Gulkan, P
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
220
views
0
downloads
Cite This
In the aftermath of two destructive urban earthquakes in 1999 in Turkey, empirical models of strong motion attenuation relationships that have been previously developed for North American and European earthquakes have been utilized in a number of national seismic hazard studies.. However, comparison of empirical evidence and estimates present significant differences. For that reason, a data set created from a suite of 100 vertical strong ground motion records from 47 national earthquakes that occurred between 1976 and 2002 has been used to develop attenuation relationships for strong ground motion in Turkey. A consistent set of empirical attenuation relationships was derived for predicting vertical peak and pseudo-absolute vertical acceleration spectral ordinates in terms of magnitude, source-to-site distance, and local geological conditions. The study manifests the strong dependence of vertical to horizontal (V/H) acceleration ratio on spectral periods and relatively weaker dependence on site geology, magnitude, and distance. The V/H ratio is found to be particularly significant at the higher frequency end of the spectrum, reaching values as high as 0.9 at short distances on soil sites. The largest long-period spectral ratios are observed to occur on rock sites where they can reach values in excess of 0.5. These results raise misgivings concerning the practice of assigning the V/H ratio a standard value of two-thirds. Hence, nonconservatism of this value at short periods and its conservatism at long periods underline the need for its revision, at least for practice in Turkey.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Geophysics
URI
https://hdl.handle.net/11511/64482
Journal
EARTHQUAKE SPECTRA
DOI
https://doi.org/10.1193/1.1774183
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Ground Motion Prediction Equations for the Vertical Ground Motion Component Based on the NGA-W2 Database
Gülerce, Zeynep; Abrahamson, Norman A.; Silva, Walter J. (SAGE Publications, 2017-05-01)
Empirical ground motion models for the vertical component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0-8.0, distances of 0-300 km, and spectral periods of 0-10 s. The model input parameters are the same as used by Abrahamson et al. (2014) except that the nonlinear site response and depth to bedrock effects are evaluated but found to be insignificant. Regional differences in large distance attenuation and ...
Consistent Source-to-Site Distance Metrics in Ground-Motion Prediction Equations and Seismic Source Models for PSHA
Bommer, Julian J.; Akkar, Dede Sinan (SAGE Publications, 2012-02-01)
Most modern ground-motion prediction equations (GMPE) use definitions of the source-to-site distance that reflect the dimensions of the fault rupture for larger earthquakes rather than using point-source measures relative to the epicenter or hypocenter. This is a positive development since it more realistically reflects the fact that energy is released from the crust around the entire fault rupture during a large earthquake. However, seismic source configurations defined for probabilistic seismic hazard ana...
Performance of seismic-isolated bridges in relation to near-fault ground-motion and isolator characteristics
Dicleli, Murat (SAGE Publications, 2006-11-01)
This paper investigates the performance of seismic-Isolated bridges (SIBs) subjected to near-fault (NF) earthquakes with forward rupture directivity effect (FRDE) in relation to the isolator, substructure, and NF earthquake properties, and examines some critical design clauses in AASHTO's Guide Specifications for Seismic Isolation Design. It is found that the SIB response is a function of the number of velocity pulses, magnitude of the NF ground motion, and distance from the fault. Particularly, a reasonabl...
Displacement-based fragility functions for low- and mid-rise ordinary concrete buildings
Akkar, S; Sucuoğlu, Haluk; Yakut, Ahmet (SAGE Publications, 2005-11-01)
Fragility functions are determined for low- and mid-rise ordinary concrete buildings, which constitute the most vulnerable construction type in Turkey as well as several other countries prone to earthquakes. A hybrid approach is employed where building capacities are obtained from field data and their dynamic responses are calculated by response history analyses. Field data consists of 32 sample buildings representing the general characteristics of two-to five-story substandard reinforced concrete buildings...
Seismic Risk Assessment of Masonry Buildings in Istanbul for Effective Risk Mitigation
Erberik, Murat Altuğ (SAGE Publications, 2010-11-01)
Unreinforced and non-engineered masonry buildings are highly vulnerable to seismic hazard and constitute a significant percentage of earthquake losses, including both casualties and economic losses. This study presents an engineering application on seismic safety assessment of unreinforced masonry (URM) buildings in Istanbul, Turkey, a metropolitan city under very high seismic risk. Nearly 20,000 masonry buildings were examined through a two-stage assessment procedure in order to identify the addresses of t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Kalkan and P. Gulkan, “Empirical attenuation equations for vertical ground motion in Turkey,”
EARTHQUAKE SPECTRA
, pp. 853–882, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64482.