Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The influence of magnitude range on empirical ground-motion prediction
Date
2007-12-01
Author
Bommer, Julian J.
Stafford, Peter J.
Alarcon, John E.
Akkar, Dede Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
147
views
0
downloads
Cite This
A key issue in the assessment of seismic hazard in regions of low-to-moderate seismicity is the extent to which accelerograms obtained from small-magnitude earthquakes can be used as the basis for predicting ground motions due to the larger-magnitude events considered in seismic hazard analysis. In essence, the question is whether empirical ground-motion prediction equations can be applied outside their strict range of applicability as defined by the magnitude and distance ranges covered by the datasets from which they are derived. This question is explored by deriving new spectral prediction equations using an extended strong-motion dataset from Europe and the Middle East covering the magnitude range M-w 3.0-7.6 and comparing the predictions with previous equations derived using data from only M-w 5.0 and above events. The comparisons show that despite their complex functional form, including quadratic magnitude-dependence and magnitude-dependent attenuation, the equations derived from larger-magnitude events should not be extrapolated to predict ground motions from earthquakes of small magnitude. Moreover, the results suggest not only that ground-motion prediction equations cannot be used outside the ranges of their underlying datasets but also that their applicability at the limits of these ranges may be questionable. Although only tested for smaller magnitudes, the results could be interpreted to suggest that predictive equations also cannot be reliably extrapolated to higher magnitudes than those represented in the dataset from which they are derived, a finding that has important implications for seismic hazard analysis.
Subject Keywords
Seismic-Hazard
,
Attenuation Relations
,
Response Spectra
,
Europe
,
Equations
,
Acceleration
,
Earthquakes
,
Records
,
Regions
,
Models
URI
https://hdl.handle.net/11511/62893
Journal
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
DOI
https://doi.org/10.1785/0120070081
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Spatial sensitivity of seismic hazard results to background seismic activity models
Yilmaz, N.; Yücemen, Mehmet Semih (2011-08-04)
In the probabilistic seismic hazard analysis, the past earthquake records that can not be associated with any one of the specific faults are treated as background seismic activity. Contribution of background seismic activity to seismic hazard is generally calculated by using two different models, namely: background area source with uniform seismicity and spatially smoothed seismicity model. In this study, two case studies are carried out for a large (a country) and a small region (a province) in order to in...
The Effects of Implementing Different Ground-motionLogic-tree Frameworks on Seismic Risk Assessment
Ay, Bekir Özer (null; 2018-06-21)
This study investigates the link between probabilistic seismic hazard assessment and corresponding loss estimations by using different ground-motion logic-tree frameworks from reliable large scale seismic hazard projects as well as the logic-tree framework established in this study. The predictive models selected for these logic trees are expected to represent the center, body and range of ground-motion intensity measure estimates. Regarding with the hazard component of risk assessment, the ground motion in...
An approach for seismic damage assessment of residential buildings /
Demirci, Ceren; Erberik, Murat Altuğ; Askan Gündoğan, Ayşegül; Department of Civil Engineering (2014)
For developing countries in earthquake-prone regions, two main issues in seismic damage estimation are identification of seismic hazard in the region of interest and up-to-date information of the existing building stock. This study proposes an approach to handle these key issues and to obtain reliable measures for regional seismic damage estimation. The approach makes use of the basic structural information for different types of construction. This information can be readily available or may have been obtai...
An Interdisciplinary Approach for Regional Seismic Damage Estimation
Askan Gündoğan, Ayşegül; Erberik, Murat Altuğ; Karim Zadeh Naghshineh, Shaghayegh; Yakut, Ahmet (2017-01-09)
In order to mitigate seismic risk in urban regions, the first task is to identify potential seismic losses in future earthquakes. Seismic loss estimation is an interdisciplinary framework including a wide range of contributions from geophysical and earthquake engineers, physical and economic planners to insurance companies. In this study, a moderate size city in Turkey, namely Erzincan, is modeled completely from geophysical attributes to the built environment. Erzincan city is on the eastern part of the No...
Influence of seismic source and ground motion modeling on the probabilistic seismic hazard assessment of the city of Van after the 23 october 2011 mw7.2 earthquake
Şenyurt, Mehtap; Akkar, Sinan; Yılmaz, Mustafa Tolga; Department of Civil Engineering (2013)
Reliable assessment of seismic hazard is the most important step for seismic design and performance assessment of structural systems. However, the inherent uncertainty in earthquakes as well as modeling of ground motion may affect the hazard computed for a particular region. This study investigates the influence of seismic source and ground motion modeling on probabilistic seismic hazard assessment (PSHA). The study considers the seismicity around the city of Van to achieve its objective as this city was hi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. J. Bommer, P. J. Stafford, J. E. Alarcon, and D. S. Akkar, “The influence of magnitude range on empirical ground-motion prediction,”
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
, pp. 2152–2170, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62893.