Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Activities of copper oxide and Cu-V and Cu-Mo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model
Date
2001-11-14
Author
Yasyerli, S
Dogu, G
Ar, I
Doğu, Timur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
Considering the importance of high-temperature removal of H2S from industrial gases, sorption studies were carried out on copper oxide and Cu-V and Cu-Mo mixed oxides in the absence and presence of hydrogen in a fixed-bed reactor. Experiments were carried out in a wide temperature range between 300 and 700 degreesC. A significant amount of SO2 was produced with CuO sorbent in the absence of hydrogen. In the case of mixed oxide sorbents, SO2 formation was detected even in the presence of hydrogen. On the basis of the experimental concentration profiles of H2S, SO2, and H2O measured in the reactor effluent and XRD results for the solid products, reaction sequences were proposed in reducing (in hydrogen) and nonreducing atmospheres. A deactivation model proposed for such noncatalytic gas-solid reactions gave excellent predictions of the H2S breakthrough curves. Sorption rate parameters obtained in the absence of hydrogen were found to be larger than the corresponding values in the presence of hydrogen. Partial reduction of CuO prior to the sorption of H2S in the presence of hydrogen is the major reason for this observation.
Subject Keywords
Pyrolysis
,
SO2
,
Sulfur
,
High-temperature removal
,
Hot-gas desulfurization
,
Containing sorbents
,
Calcined limestone
,
Kinetics
URI
https://hdl.handle.net/11511/62937
Journal
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
DOI
https://doi.org/10.1021/ie0010621
Collections
Graduate School of Natural and Applied Sciences, Article