Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Catalytic effects of metallic additives on the combustion properties of crude oils by thermal analysis techniques
Date
2001-08-20
Author
Kök, Mustafa Verşan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
243
views
0
downloads
Cite This
Differential scanning calorimetry (DSC) was applied to crude oil combustion in the presence and absence of metal chlorides. It was observed that in the presence of smaller ratios of metallic additives, the surface reactions were predominant and the catalyst did not affect the reactions much. Three reaction regions were identified as low temperature oxidation (LTO), middle temperature oxidation (MTO) and high temperature oxidation (HTO). Kinetic parameters of the reaction regions were determined with two different methods and the results are discussed.
Subject Keywords
Combustion
,
Metal oxides and kinetics
,
Differential scanning calorimeter
URI
https://hdl.handle.net/11511/41910
Journal
Journal of Thermal Analysis and Calorimetry
DOI
https://doi.org/10.1023/a:1011534121473
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Thermal behavior and kinetics of crude oils at low heating rates by differential scanning calorimeter
Kök, Mustafa Verşan (2012-04-01)
The objective of this research was to investigate thermal behavior and kinetics of different origin crude oils in limestone matrix by differential scanning calorimeter (DSC) at low heating rates. In DSC experiments, three distinct reaction regions were identified in all of the crude oil + limestone mixtures known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO) respectively. Kinetic analysis of the crude oil samples was determined by different models known as AST...
Calorimetric study approach for crude oil combustion in the presence of clay as catalyst
Varfolomeev, Mikhail A.; Nurgaliev, Danis K.; Kök, Mustafa Verşan (2016-01-01)
In this research, the effect of heating rate and different clay concentrations on light and heavy crude oils in limestone matrix was investigated by differential scanning calorimeter (DSC). In DSC experiments, two main distinct reaction regions were identified in all of the crude oil + limestone matrix + catalyst, known as low- and high-temperature oxidation respectively. It was observed that addition of clay to porous matrix significantly affected the thermal characteristics and kinetics of different origi...
Thermal characterization of different origin class-G cements
Kök, Mustafa Verşan (2014-02-01)
In this study, thermal characteristics and kinetics of three different origin class-G cements (Mix, Bolu, and Nuh) were studied using thermogravimetry (TG/DTG) and differential scanning calorimeter (DSC). In DSC curves at different heating rates a number of peaks were observed consistently in different temperature intervals. TG/DTG is used to identify the detected phases and the corresponding mass loss. In the dehydration kinetic study of the different origin class-G cement samples, three different methods ...
Combustion characteristics and kinetics of diesel and canola oil samples
Kök, Mustafa Verşan (2016-01-01)
In this study, combustion and pyrolysis behavior of diesel and canola oil is investigated using thermal analysis techniques known as thermogravimetry (TG-DTG) and differential scanning calorimetry (DSC) at different heating rates. Reaction regions, peak temperatures, mass loss, heat flow rates, ignition temperatures, and specific heat of diesel and canola oil samples are determined using TG-DTG and DSC data. It was observed that as the heating rate of the reactions increased, peak temperatures of the reacti...
Simultaneous thermogravimetry-calorimetry study on the combustion of coal samples: Effect of heating rate
Kök, Mustafa Verşan (2012-01-01)
Combustion characteristics of two different coal samples were investigated using power compensating type differential scanning calorimeter (DSC) and thermogravimetry (TG-DTG) at different heating rates (5, 10 and 15 degrees C/min). Differential scanning calorimeter (DSC) and thermogravimetry (TG-DTG) curves revealed two main reaction regions at each heating rate studied. Reaction regions, peak and burn-out temperatures, weight loss and heat of reactions of the samples were determined. Kinetic parameters of ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. V. Kök, “Catalytic effects of metallic additives on the combustion properties of crude oils by thermal analysis techniques,”
Journal of Thermal Analysis and Calorimetry
, pp. 1311–1318, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41910.