Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East

Download
2014-02-01
Douglas, John
Akkar, Dede Sinan
Ameri, Gabriele
Bard, Pierre-Yves
Bindi, Dino
Bommer, Julian J.
Bora, Sanjay Singh
Cotton, Fabrice
Derras, Boumediene
Hermkes, Marcel
Kuehn, Nicolas Martin
Luzi, Lucia
Massa, Marco
Pacor, Francesca
Riggelsen, Carsten
Sandikkaya, M. Abdullah
Scherbaum, Frank
Stafford, Peter J.
Traversa, Paola
This article presents comparisons among the five ground-motion models described in other articles within this special issue, in terms of data selection criteria, characteristics of the models and predicted peak ground and response spectral accelerations. Comparisons are also made with predictions from the Next Generation Attenuation (NGA) models to which the models presented here have similarities (e.g. a common master database has been used) but also differences (e.g. some models in this issue are nonparametric). As a result of the differing data selection criteria and derivation techniques the predicted median ground motions show considerable differences (up to a factor of two for certain scenarios), particularly for magnitudes and distances close to or beyond the range of the available observations. The predicted influence of style-of-faulting shows much variation among models whereas site amplification factors are more similar, with peak amplification at around 1s. These differences are greater than those among predictions from the NGA models. The models for aleatory variability (sigma), however, are similar and suggest that ground-motion variability from this region is slightly higher than that predicted by the NGA models, based primarily on data from California and Taiwan.
BULLETIN OF EARTHQUAKE ENGINEERING

Suggestions

Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East
Akkar, S.; Sandikkaya, M. A.; Bommer, J. J. (Springer Science and Business Media LLC, 2014-02-01)
This article presents the latest generation of ground-motion models for the prediction of elastic response (pseudo-) spectral accelerations, as well as peak ground acceleration and velocity, derived using pan-European databases. The models present a number of novelties with respect to previous generations of models (Ambraseys et al. in Earthq Eng Struct Dyn 25:371-400, 1996, Bull Earthq Eng 3:1-53, 2005; Bommer et al. in Bull Earthq Eng 1:171-203, 2003; Akkar and Bommer in Seismol Res Lett 81:195-206, 2010)...
Extending ground-motion prediction equations for spectral accelerations to higher response frequencies
Bommer, Julian J.; Akkar, Dede Sinan; Drouet, Stephane (Springer Science and Business Media LLC, 2012-04-01)
Ground-motion prediction equations (GMPEs) for spectral accelerations have traditionally focused on the range of response periods most closely associated with the dynamic characteristics of buildings. Providing predictions only in this period range (from 0.1 to 2 or 3 s) has also accommodated the assumed limitations on the usable period range resulting from the processing of accelerograms. There are, however, engineering applications for which estimates of spectral ordinates are required at shorter response...
Probabilistic seismic hazard assessment of Eastern Marmara Region
Gülerce, Zeynep (Springer Science and Business Media LLC, 2013-10-01)
The objective of this study is to evaluate the seismic hazard in Eastern Marmara Region using an improved probabilistic seismic hazard assessment methodology. Two significant improvements over the previous seismic hazard assessment practices are accomplished in this study: advanced seismic source characterization models in terms of source geometry and recurrence relationships are developed, and improved global ground motion models (NGA-W1 models) are employed to represent the ground motion variability. Plan...
A Displacement-Based Approach for the Seismic Retrofitting of Medium Rise Non-Ductile RC Frames with Added Shear Walls
Sucuoğlu, Haluk (Informa UK Limited, 2011-01-01)
A simple displacement-based methodology is presented in this study for the seismic retrofitting of medium height non-ductile concrete frames. Deformation capacities of the existing columns control design. A minimum amount of infill shear walls are added in both orthogonal directions for maintaining the deformation levels below the level dictated by the existing columns, which are usually at the ground story. Interstory drifts and member end rotations are employed as performance parameters. The proposed disp...
Importance of Degrading Behavior for Seismic Performance Evaluation of Simple Structural Systems
Erberik, Murat Altuğ (Informa UK Limited, 2011-01-01)
This study focuses on effect of degradation characteristics on seismic performance of simple structural systems. Equivalent single degree of freedom systems are used for which the structural characteristics are taken from existing reinforced concrete (RC) frame buildings. Simulation of degrading behavior is achieved by considering actual experimental data. To obtain the seismic response of degrading structural systems, two different approaches are used: inelastic spectral analysis and fragility analysis. Ac...
Citation Formats
J. Douglas et al., “Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East,” BULLETIN OF EARTHQUAKE ENGINEERING, pp. 341–358, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63068.