Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimum design of flexible multibody systems with dynamic behavior constraints
Date
1996-01-01
Author
Ider, SK
Oral, Süha
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
196
views
0
downloads
Cite This
A methodology is presented for the optimum design of high-speed multibody systems under time-dependent stress and displacement constraints by mathematical programming. Finite elements are used in the modeling of the flexible links. The design variables are the sectional properties of the elements. The time dependence of the constraints is removed through the use oi equivalent constraints based on the most critical constraints. It is shown that this approach yields a better design than using equivalent constraints obtained by the Kresselmeier-Steinhauser function. An optimizer based on sequential quadratic programming is used and the design sensitivities are evaluated by overall finite differences. The dynamical equations contain the nonlinear interactions between the rigid and elastic degrees-of-freedom. To illustrate the procedure, a Peaucellier-Lipkin mechanism is optimized by using different equivalent constraints.
URI
https://hdl.handle.net/11511/63243
Journal
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Optimum design of high-speed flexible robotic arms with dynamic behavior constraints
Oral, Süha (1997-10-01)
A methodology is presented for the optimum design of robotic arms under time-dependent stress and displacement constraints by using mathematical programming. Finite elements are used in the modeling of the flexible links. The design variables are the cross-sectional dimensions of the elements. The time dependence of the constraints is removed through the use of equivalent constraints based on the most critical constraints. It is shown that this approach yields a better design than using equivalent constrain...
Automated Sizing of Truss Structures Using a Computationally Improved SOPT Algorithm
Hasançebi, Oğuzhan (2013-06-01)
The present study attempts to apply an efficient yet simple optimization (SOPT) algorithm to optimum design of truss structures under stress and displacement constraints. The computational efficiency of the technique is improved through avoiding unnecessary analyses during the course of optimization using the so-called upper bound strategy (UBS). The efficiency of the UBS integrated SOPT algorithm is evaluated through benchmark sizing optimization problems of truss structures and the numerical results are r...
Optimising a nonlinear utility function in multi-objective integer programming
Ozlen, Melih; Azizoğlu, Meral; Burton, Benjamin A. (2013-05-01)
In this paper we develop an algorithm to optimise a nonlinear utility function of multiple objectives over the integer efficient set. Our approach is based on identifying and updating bounds on the individual objectives as well as the optimal utility value. This is done using already known solutions, linear programming relaxations, utility function inversion, and integer programming. We develop a general optimisation algorithm for use with k objectives, and we illustrate our approach using a tri-objective i...
Linear and nonlinear progressive failure analysis of laminated composite aerospace structures
Günel, Murat; Kayran, Altan; Department of Aerospace Engineering (2012)
This thesis presents a finite element method based comparative study of linear and geometrically non-linear progressive failure analysis of thin walled composite aerospace structures, which are typically subjected to combined in-plane and out-of-plane loadings. Different ply and constituent based failure criteria and material property degradation schemes have been included in a PCL code to be executed in MSC Nastran. As case studies, progressive failure analyses of sample composite laminates with cut-outs u...
Direction finding performance of antenna arrays on complex platforms using numerical electromagnetic simulation tools
Özeç, Mustafa Onur; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2011)
An important step for the design of direction finding systems is the performance evaluation using numeric electromagnetic simulation tools. In this thesis, a method is presented for both modeling and simulation in a numeric electromagnetic simulation tool FEKO. The method relies on the data generated by FEKO. The data is then processed by correlative interferometer algorithm. This process is implemented in a MATLAB environment. Different types of antenna arrays including dipole, monopole and discone antenna...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ider and S. Oral, “Optimum design of flexible multibody systems with dynamic behavior constraints,”
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS
, pp. 351–359, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63243.