Linear and nonlinear progressive failure analysis of laminated composite aerospace structures

Download
2012
Günel, Murat
This thesis presents a finite element method based comparative study of linear and geometrically non-linear progressive failure analysis of thin walled composite aerospace structures, which are typically subjected to combined in-plane and out-of-plane loadings. Different ply and constituent based failure criteria and material property degradation schemes have been included in a PCL code to be executed in MSC Nastran. As case studies, progressive failure analyses of sample composite laminates with cut-outs under combined loading are executed to study the effect of geometric non-linearity on the first ply failure and progression of failure. Ply and constituent based failure criteria and different material property degradation schemes are also compared in terms of predicting the first ply failure and failure progression. For mode independent failure criteria, a method is proposed for the determination of separate material property degradation factors for fiber and matrix failures which are assumed to occur simultaneously. The results of the present study show that under combined out-of-plane and in-plane loading, linear analysis can significantly underestimate or overestimate the failure progression compared to geometrically non-linear analysis even at low levels of out-of-plane loading.