Evolving Aggregation Behavior for Robot Swarms: A Cost Analysis for Distinct Fitness Functions

2008-10-29
Yalcin, Cagri
Evolving behaviors for swarm robotic systems offers interesting emerged strategies which may be complex and unpredictable by an explicit behavioral controller design. However, even in the evolutionary case, there are critical choices regarding the design of the evolutionary algorithm that a roboticist should take into account to achieve desired goal with a reasonable efficiency. Among these design choices, adopting an appropriate fitness function is a crucial task, since it directly affects the resulting evolved strategy of a robot group. For the evolution of a single goal, different fitness functions can be used and their efficiencies can be compared. In this study, we chose complete aggregation as the desired goal for a robot swarm and compared the performances and costs of two distinct fitness functions in a simulated environment. Whilst the performance analysis consists of testing the average success rates, the cost analysis measures average time and distance taken by robots up to the successful formation. The results showed that for small communication ranges there is a trade-off between performance and cost in the fitness function selection; and hybrid control models can be utilized to overcome this issue to some extent.

Suggestions

Evolving aggregation behaviors for swarm robotics systems: a systematic case study
Bahçeci, Erkin; Şahin, Erol; Department of Computer Engineering (2005)
Evolutionary methods are shown to be useful in developing behaviors in robotics. Interest in the use of evolution in swarm robotics is also on the rise. However, when one attempts to use artificial evolution to develop behaviors for a swarm robotic system, he is faced with decisions to be made regarding some parameters of fitness evaluations and of the genetic algorithm. In this thesis, aggregation behavior is chosen as a case, where performance and scalability of aggregation behaviors of perceptron control...
Evolving aggregation behaviors for swarm robotic systems: A systematic case study
Bahceci, E; Şahin, Erol (2005-06-10)
When one attempts to use artificial evolution to develop behaviors for a swarm robotic system, he is faced with decisions to be made regarding the parameters of the evolution. In this paper, aggregation behavior is chosen as a case, where performance and scalability of aggregation behaviors of perceptron controllers that are evolved for a simulated swarm robotic system are systematically studied with different parameter settings. Four experiments are conducted varying some of the parameters, and rules of th...
Improving Computational Efficiency of Bat-Inspired Algorithm in Optimal Structural Design
Hasançebi, Oğuzhan (2015-07-01)
Bat-inspired (BI) algorithm is a recent metaheuristic optimization technique that simulates echolocation behavior of bats in seeking a design space. Along the same line with almost all metaheuristics, this algorithm also entails a large number of time-consuming structural analyses in structural design optimization applications. This study is focused on improving computational efficiency of the BI algorithm in optimum structural design. The number of structural analyses required by BI algorithm in the course...
Generation and modification of 3D models with deep neural networks
Öngün, Cihan; Temizel, Alptekin; Department of Information Systems (2021-9)
Artificial intelligence (AI) and particularly deep neural networks (DNN) have become very hot topics in the recent years and they have been shown to be successful in problems such as detection, recognition and segmentation. More recently DNNs have started to be popular in data generation problems by the invention of Generative Adversarial Networks (GAN). Using GANs, various types of data such as audio, image or 3D models could be generated. In this thesis, we aim to propose a system that creates artificial...
Simple and complex behavior learning using behavior hidden Markov Model and CobART
Seyhan, Seyit Sabri; Alpaslan, Ferda Nur; Department of Computer Engineering (2013)
In this thesis, behavior learning and generation models are proposed for simple and complex behaviors of robots using unsupervised learning methods. Simple behaviors are modeled by simple-behavior learning model (SBLM) and complex behaviors are modeled by complex-behavior learning model (CBLM) which uses previously learned simple or complex behaviors. Both models have common phases named behavior categorization, behavior modeling, and behavior generation. Sensory data are categorized using correlation based...
Citation Formats
C. Yalcin, “Evolving Aggregation Behavior for Robot Swarms: A Cost Analysis for Distinct Fitness Functions,” 2008, p. 96, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63334.