A rational data delivery framework for disaster-inspired internet of nano-things (IoNT) in practice

Al-Turjman, Fadi
In this paper, we put forward a data delivery framework in nano-scale systems, where a number of nanosensors are disseminated over tiny areas such as small objects, plant roots, human bodies and the likes to help in disaster management. For our considered system, data is dispatched from varied subsystems through a nano-router, towards a gateway connected to a much larger system such as the Internet. Consequently, this makes our system suitable to be used for nano-scale disaster-inspired applications in the internet of nano things (IoNT). We look at the entire nanonetwork energy while selecting the next hop for the routed data packet while considering critical attributes in disastrous situations such as fairness in load distribution and time to repair. Our data delivery system considers IoNT-limitations related to the hop count and the amount of remaining energy level. Extensive simulations verified by testbed results in practice have been performed to show the effectiveness of the proposed data delivery approach in comparison to other energy-aware baseline approaches in the literature.


A Cognitive Routing Protocol for Bio-Inspired Networking in the Internet of Nano-Things (IoNT)
Al-Turjman, Fadi (Springer Science and Business Media LLC, 2020-10-01)
In this paper, we propose a framework for data delivery in nano-scale networks, where numerous wireless sensors are distributed on a human body, small object, tiny plant root, etc. Our framework caters for green energy-efficient applications in the Internet of Nano Things (IoNT) where data is relayed via nano-routers from a multifarious nanonodes towards a gateway connected to a large-scale network such as the Internet. We consider the entire network energy while choosing the next hop for our routed packets...
A systematic approach to the integration of overlapping partitions in service-oriented data grids
Sunercan, H. Kevser; Alpdemir, M. Nedim; Çiçekli, Fehime Nihan (Elsevier BV, 2011-06-01)
This paper aims to provide a service-oriented data integration solution over data Grids for cases where distributed data sources are partitioned with overlapping sections of various proportions. This is an interesting variation which combines both replicated and partitioned data within the same data management framework. Thus, the data management infrastructure has to deal with specific challenges regarding the identification, access and aggregation of partitioned data with varying proportions of overlappin...
Optimum design and operation of 'a pump-piping-storage system'
Kaplan, H; Seireg, A; Dölen, Melik (Inderscience Publishers, 2001-01-01)
The study reported in this paper is undertaken to develop a computer simulation and an optimum design and operation strategy for a general storage system. The influence of various design parameters on the total operation cost of the system for a general delivery regime is also studied.
A temporal neural network model for constructing connectionist expert system knowledge bases
Alpaslan, Ferda Nur (Elsevier BV, 1996-04-01)
This paper introduces a temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications.
SWARM-based data delivery in Social Internet of Things
Hasan, Mohammed Zaki; Al-Turjman, Fadi (Elsevier BV, 2019-03-01)
Social Internet of Things (SIoTs) refers to the rapidly growing network of connected objects and people that are able to collect and exchange data using embedded sensors. To guarantee the connectivity among these objects and people, fault tolerance routing has to be significantly considered. In this paper, we propose a bio-inspired particle multi-swarm optimization (PMSO) routing algorithm to construct, recover and select k-disjoint paths that tolerates the failure while satisfying quality of service (QoS) ...
Citation Formats
F. Al-Turjman, “A rational data delivery framework for disaster-inspired internet of nano-things (IoNT) in practice,” CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, pp. 1751–1763, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63354.