Pulsars glitches and superfluids

1998-01-01
Alpar, M.Ali
Astronomers have long been intrigued by occasional "glitches" in the rotation of pulsars. These neutron stars usually rotate with such precision that they are known as the best timekeepers in the universe, but every so often their rotation rate suddenly increases. It is thought that these glitches are related to superfluidity inside the star, which allows the neutrons to flow without friction.
PHYSICS WORLD

Suggestions

Colliding gravitational plane waves : bell-szekeres solution
Cambaz, Efsun; Karasu, Atalay; Department of Physics (2005)
The collision of pure electromagnetic plane waves with collinear polarization in Einstein-Maxwell theory and the collision of gravitational plane waves in vacuum Einstein theory are studied. The singularity structure of the Bell-Szekeres and the Szekeres solutions is examined by using curvature invariants. As a final work, the collision of the plane waves in dilaton gravity theory is studied and also the singularity structure of the corresponding space-time is examined.
Black hole collisions at the speed of light
Şentürk, Çetin; Karasu, Atalay; Department of Physics (2010)
The main purpose of this work is to study the collision of two black holes and the energy loss due to the gravitational waves emitted during this collision in the framework of general relativity. For this purpose we first study plane wave geometries and their collisions. More realistic collisions are the pp-wave collisions. As an analytic treatment of this problem, we investigate the head-on collision of two ultra-relativistic black holes. Treating the problem perturbatively, we extract the news function to...
Study of beam-halo events in photon production in the CMS experiment
Yıldırım, Eda; Güler, Ali Murat; Department of Physics (2011)
The Compact Muon Solenoid (CMS) Experiment operates at the Large Hadron Collider (LHC) which is the highest energy particle accelerator in the world. CMS is a general purpose detector designed to investigate a wide range of physics, including the search for the Higgs boson. The measurement of photon production in the CMS experiment is crucial since it represents an irreducible background for many new physics searches, such as decay of Higgs to two photon, supersymmetry and extra-dimensions. The study of bea...
Graviton induced monojet production in cms within add type led
Surat, Uğur Emrah; Serin, Meltem; Department of Physics (2010)
The discovery reach for the ADD-type Large Extra Dimension (LED) scenario in the CMS Experiment at the LHC is presented by looking at the Monojet + Missing Energy signature, which arises as a result of a single graviton emission accompanied by a quark or gluon. Using Monte Carlo generated events, two LHC run scenarios were considered and compared namely a center-of-mass energy of 14 TeV and integrated luminosity of 100 pb−1, and a center-of-mass energy of 10 TeV and integrated luminosity of 200 pb−1. Detail...
Entanglement in the relativistic quantum mechanics
Yakaboylu, Enderalp; İpekoğlu, Yusuf; Department of Physics (2010)
In this thesis, entanglement under fully relativistic settings are discussed. The thesis starts with a brief review of the relativistic quantum mechanics. In order to describe the effects of Lorentz transformations on the entangled states, quantum mechanics and special relativity are merged by construction of the unitary irreducible representations of Poincaré group on the infinite dimensional Hilbert space of state vectors. In this framework, the issue of finding the unitary irreducible representations of ...
Citation Formats
M. A. Alpar, “Pulsars glitches and superfluids,” PHYSICS WORLD, pp. 25–26, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63356.