Colliding gravitational plane waves : bell-szekeres solution

Download
2005
Cambaz, Efsun
The collision of pure electromagnetic plane waves with collinear polarization in Einstein-Maxwell theory and the collision of gravitational plane waves in vacuum Einstein theory are studied. The singularity structure of the Bell-Szekeres and the Szekeres solutions is examined by using curvature invariants. As a final work, the collision of the plane waves in dilaton gravity theory is studied and also the singularity structure of the corresponding space-time is examined.

Suggestions

Black hole collisions at the speed of light
Şentürk, Çetin; Karasu, Atalay; Department of Physics (2010)
The main purpose of this work is to study the collision of two black holes and the energy loss due to the gravitational waves emitted during this collision in the framework of general relativity. For this purpose we first study plane wave geometries and their collisions. More realistic collisions are the pp-wave collisions. As an analytic treatment of this problem, we investigate the head-on collision of two ultra-relativistic black holes. Treating the problem perturbatively, we extract the news function to...
COLLIDING ABELIAN GAUGE PLANE-WAVES
GURSES, M; Karasu, Emine Ayşe (IOP Publishing, 1989-04-01)
The characteristic initial-value problem of the gravitational and N-Maxwell plane wave collision is solved exactly.
Quantum mechanics on curved hypersurfaces
Olpak, Mehmet Ali; Tekin, Bayram; Department of Physics (2010)
In this work, Schrödinger and Dirac equations will be examined in geometries that confine the particles to hypersurfaces. For this purpose, two methods will be considered. The first method is the thin layer method which relies on explicit use of geometrical relations and the squeezing of a certain coordinate of space (or spacetime). The second is Dirac’s quantization procedure involving the modification of canonical quantization making use of the geometrical constraints. For the Dirac equation, only the fir...
Pulsars glitches and superfluids
Alpar, M.Ali (1998-01-01)
Astronomers have long been intrigued by occasional "glitches" in the rotation of pulsars. These neutron stars usually rotate with such precision that they are known as the best timekeepers in the universe, but every so often their rotation rate suddenly increases. It is thought that these glitches are related to superfluidity inside the star, which allows the neutrons to flow without friction.
Neutrino oscillations induced by spacetime torsion
Adak, M; Dereli, T; Ryder, LH (IOP Publishing, 2001-04-21)
The gravitational neutrino oscillation problem is studied by considering the Dirac Hamiltonian in a Riemann-Cartan spacetime and calculating the dynamical phase. Torsion contributions which depend on the spin direction of the mass eigenstates are found. These effects are of the order of Planck scales.
Citation Formats
E. Cambaz, “Colliding gravitational plane waves : bell-szekeres solution ,” M.S. - Master of Science, Middle East Technical University, 2005.