An efficient parallel triangular inversion by Gauss elimination with sweeping

1998-01-01
Kiper, A
A parallel computation model to invert a lower triangular matrix using Gauss elimination with sweeping technique is presented. Performance characteristics that we obtain are O(n) time and O(n(2)) processors leading to an efficiency of O(1/n). A comparative performance study with the available fastest parallel matrix inversion algorithms is given. We believe that the method presented here is superior over the existing methods in efficiency measure and in processor complexity.
EURO-PAR '98 PARALLEL PROCESSING

Suggestions

An alternative simple solution of the sextic anharmonic oscillator and perturbed coulomb problems
IKHDAİR, SAMEER; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2007-10-01)
Utilizing an appropriate ansatz to the wave function, we reproduce the exact bound-state solutions of the radial Schrodinger equation to various exactly solvable sextic an-harmonic oscillator and confining perturbed Coulomb models in D-dimensions. We show that the perturbed Coulomb problem with eigenvalue E can be transformed to a sextic anharmonic oscillator problem with eigenvalue P. We also check the explicit relevance of these two related problems in higher-space dimensions. It is shown that exact solut...
Extended dynamical symmetries of Landau levels in higher dimensions
Kürkcüoğlu, Seçkin; YURDUŞEN, İSMET (Springer Science and Business Media LLC, 2020-02-14)
Continuum models for time-reversal (TR) invariant topological insulators (Tis) in d >= 3 dimensions are provided by harmonic oscillators coupled to certain SO(d) gauge fields. These models are equivalent to the presence of spin-orbit (SO) interaction in the oscillator Hamiltonians at a critical coupling strength (equivalent to the harmonic oscillator frequency) and leads to flat Landau Level (LL) spectra and therefore to infinite degeneracy of either the positive or the negative helicity states depending on...
A Rayleigh–Ritz Method for Numerical Solutions of Linear Fredholm Integral Equations of the Second Kind
Kaya, Ruşen; Taşeli, Hasan (2022-01-01)
A Rayleigh–Ritz Method is suggested for solving linear Fredholm integral equations of the second kind numerically in a desired accuracy. To test the performance of the present approach, the classical one-dimensional Schrödinger equation -y″(x)+v(x)y(x)=λy(x),x∈(-∞,∞) has been converted into an integral equation. For a regular problem, the unbounded interval is truncated to x∈ [ - ℓ, ℓ] , where ℓ is regarded as a boundary parameter. Then, the resulting integral equation has been solved and the results are co...
An alternative series solution to the isotropic quartic oscillator in N dimensions
Taşeli, Hasan (Springer Science and Business Media LLC, 1996-01-01)
The series solution of the N-dimensional isotropic quartic oscillator weighted by an appropriate function which exhibits the correct asymptotic behavior of the wave function is presented. The numerical performance of the solution in Bill's determinant picture is excellent, and yields the energy spectrum of the system to any desired accuracy for the full range of the coupling constant. Furthermore, it converges to the well-known exact solution of the unperturbed harmonic oscillator wave function, when the an...
A Numerical Model for Investigating the Effect of Rough Surface Parameters on Radar Cross Section Statistics
Kuzuoğlu, Mustafa (2017-07-14)
Electromagnetic scattering from rough surfaces is modeled by combining the periodic finite element method and the transformation electromagnetics approach. The behavior of the radar cross section (RCS) at both specular and backscattering directions is analyzed as a function of rms height and correlation length with the help of Monte Carlo simulations. The concept of backscattering enhancement is illustrated, and some conclusions are drawn about the RCS statistics.
Citation Formats
A. Kiper, “An efficient parallel triangular inversion by Gauss elimination with sweeping,” EURO-PAR ’98 PARALLEL PROCESSING, pp. 793–797, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63425.