Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Additive polynomials over perfect fields
Date
2011-07-29
Author
Durhan, Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
172
views
0
downloads
Cite This
Additive polynomials in one variable over valued fields of positive characteristic are sufficiently well understood in terms of their approximation properties. We extend results in this direction to multi-variable additive polynomials over perfect valued fields.
Subject Keywords
Additive Polynomials
,
Valued Fields
URI
https://hdl.handle.net/11511/63455
Conference Name
2nd International Conference and Workshop on Valuation Theory
Collections
Department of Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Additive polynomials and primitive roots over finite fields
Özbudak, Ferruh (2001-01-01)
We prove existence of primitive roots with a prescribed nonzero image using the arithmetic of algebraic function fields for a class of polynomials over sufficiently large finite fields.
CLUSTER ALGEBRAS AND SYMMETRIC MATRICES
Seven, Ahmet İrfan (2015-02-01)
In the structural theory of cluster algebras, a crucial role is played by a family of integer vectors, called c-vectors, which parametrize the coefficients. It has recently been shown that each c-vector with respect to an acyclic initial seed is a real root of the corresponding root system. In this paper, we obtain an interpretation of this result in terms of symmetric matrices. We show that for skew-symmetric cluster algebras, the c-vectors associated with any seed defines a quasi-Cartan companion for the ...
Smooth manifolds with infinite fundamental group admitting no real projective structure
Çoban, Hatice; Ozan, Yıldıray; Department of Mathematics (2017)
In this thesis, we construct smooth manifolds with the infinite fundamental group Z_2*Z_2, for any dimension n>=4, admitting no real projective structure. They are first examples of manifolds in higher dimensions with infinite fundamental group admitting no real projective structures. The motivation of our study is the related work of Cooper and Goldman. They proved that RP^3#RP^3 does not admit any real projective structure and this is the first known example in dimension 3.
Value sets of Lattes maps over finite fields
Küçüksakallı, Ömer (Elsevier BV, 2014-10-01)
We give an alternative computation of the value sets of Dickson polynomials over finite fields by using a singular cubic curve. Our method is not only simpler but also it can be generalized to the non-singular elliptic case. We determine the value sets of Lattes maps over finite fields which are rational functions induced by isogenies of elliptic curves with complex multiplication.
Discrete symmetries and nonlocal reductions
GÜRSES, METİN; Pekcan, Asli; Zheltukhın, Kostyantyn (Elsevier BV, 2020-01-31)
We show that nonlocal reductions of systems of integrable nonlinear partial differential equations are the special discrete symmetry transformations.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Durhan, “Additive polynomials over perfect fields,” SPAIN, 2011, p. 219, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63455.