Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Vehicular Speed Learning in the Future Smart-cities' Paradigm
Date
2017-10-12
Author
Al-Turjman, Fadi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
In this paper we propose a vehicular speed learning framework that recommends best traffic load based on a particularly required latency and throughput conditions to be achieved. The framework is composed of two main layers, the base layer and two enhancement layers. The base layer aims at providing an in-vehicle wireless receiver to inform the driver about the speed limit within the area he/she is in. The first enhancement layer aims at providing the driver with a high level intelligence that can be utilized for various applications. The second enhancement layer aims at utilizing smartphones as an intelligent sensor. By having the vehicle speed and the speed limits available, the smartphone can be used to detect particular conditions such as congestions, accidents or defects in the roads. Observing drivers' monitored behavior while given the current road conditions, the system extrapolates from these new and other previously available observations to predict an optimal speed limit. In this fashion, the framework is able to continuously adapt and learn autonomously to manage efficient and safe transportation.
Subject Keywords
Smart-Cities Paradigm
,
Delay-Tolerance
,
Vehicular Speed Learning
URI
https://hdl.handle.net/11511/63811
DOI
https://doi.org/10.1109/lcn.workshops.2017.65
Collections
Engineering, Conference / Seminar