An infinite family of strongly real Beauville p-groups

Download
2018-04-01
Gul, Sukran
We give an infinite family of non-abelian strongly real Beauville p-groups for every prime p by considering the quotients of triangle groups, and indeed we prove that there are non-abelian strongly real Beauville p-groups of order for every or 7 according as or or . This shows that there are strongly real Beauville p-groups exactly for the same orders for which there exist Beauville p-groups.
MONATSHEFTE FUR MATHEMATIK

Suggestions

On the existence of kappa-existentially closed groups
Kegel, Otto H.; Kaya, Burak; Kuzucuoğlu, Mahmut (2018-09-01)
We prove that a κ-existentially closed group of cardinality λ exists whenever κ ≤ λ are uncountable cardinals with λ^{<κ} = λ. In particular, we show that there exists a κ-existentially closed group of cardinalityκ for regular κ with 2^{<κ} = κ. Moreover, we prove that there exists noκ-existentially closed group of cardinality κ for singular κ. Assuming thegeneralized continuum hypothesis, we completely determine the cardinalsκ ≤ λ for which a κ-existentially closed group of cardinality λ exists
The Influence of some embedding properties of subgroups on the structure of a finite group
Kızmaz, Muhammet Yasir; Ercan, Gülin; Department of Mathematics (2018)
In a finite group $G$, a subgroup $H$ is called a $TI$-subgroup if $H$ intersects trivially with distinct conjugates of itself. Suppose that $H$ is a Hall $pi$-subgroup of $G$ which is also a $TI$-subgroup. A famous theorem of Frobenius states that $G$ has a normal $pi$-complement whenever $H$ is self normalizing. In this case, $H$ is called a Frobenius complement and $G$ is said to be a Frobenius group. A first main result in this thesis is the following generalization of Frobenius' Theorem. textbf{Theorem...
Locally finite groups and their subgroups with small centralizers
ERSOY, KIVANÇ; Kuzucuoğlu, Mahmut; Shunwatsky, Pavel (2017-07-01)
Let p be a prime and G a locally finite group containing an elementary abelian p-subgroup A of rank at least 3 such that C-G(A) is Chernikov and C-G(a) involves no infinite simple groups for any a is an element of A(#). We show that G is almost locally soluble (Theorem 1.1). The key step in the proof is the following characterization of PSLp(k): An infinite simple locally finite group G admits an elementary abelian p-group of automorphisms A such that C-G(A) is Chernikov and C-G(A) Keywords: involves no inf...
Prime graphs of solvable groups
Ulvi , Muhammed İkbal; Ercan, Gülin; Department of Electrical and Electronics Engineering (2020-8)
If $G$ is a finite group, its prime graph $Gamma_G$ is constructed as follows: the vertices are the primes dividing the order of $G$, two vertices $p$ and $q$ are joined by an edge if and only if $G$ contains an element of order $pq$. This thesis is mainly a survey that gives some important results on the prime graphs of solvable groups by presenting their proofs in full detail.
The mapping class group is generated by two commutators
Baykur, R. Inanc; Korkmaz, Mustafa (2021-05-01)
We show that the mapping class group of any closed connected orientable surface of genus at least five is generated by only two commutators, and if the genus is three or four, by three commutators. (C) 2021 Elsevier Inc. All rights reserved.
Citation Formats
S. Gul, “An infinite family of strongly real Beauville p-groups,” MONATSHEFTE FUR MATHEMATIK, pp. 663–675, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63813.