Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The mapping class group is generated by two commutators
Date
2021-05-01
Author
Baykur, R. Inanc
Korkmaz, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
373
views
0
downloads
Cite This
We show that the mapping class group of any closed connected orientable surface of genus at least five is generated by only two commutators, and if the genus is three or four, by three commutators. (C) 2021 Elsevier Inc. All rights reserved.
Subject Keywords
Mapping class group
,
Commutators
,
Generators of a group
,
Perfect groups
,
Symplectic group
URI
https://hdl.handle.net/11511/89530
Journal
JOURNAL OF ALGEBRA
DOI
https://doi.org/10.1016/j.jalgebra.2021.01.021
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Torsion Generators Of The Twist Subgroup
Altunöz, Tülin; Pamuk, Mehmetcik; Yildiz, Oguz (2022-1-01)
We show that the twist subgroup of the mapping class group of a closed connected nonorientable surface of genus g >= 13 can be generated by two involutions and an element of order g or g -1 depending on whether 9 is odd or even respectively.
Generating the Mapping Class Group of a Nonorientable Surface by Two Elements or by Three Involutions
Altunöz, Tülin; Pamuk, Mehmetcik; Yildiz, Oguz (2022-01-01)
We prove that, for g≥ 19 the mapping class group of a nonorientable surface of genus g, Mod (Ng) , can be generated by two elements, one of which is of order g. We also prove that for g≥ 26 , Mod (Ng) can be generated by three involutions.
The Influence of some embedding properties of subgroups on the structure of a finite group
Kızmaz, Muhammet Yasir; Ercan, Gülin; Department of Mathematics (2018)
In a finite group $G$, a subgroup $H$ is called a $TI$-subgroup if $H$ intersects trivially with distinct conjugates of itself. Suppose that $H$ is a Hall $pi$-subgroup of $G$ which is also a $TI$-subgroup. A famous theorem of Frobenius states that $G$ has a normal $pi$-complement whenever $H$ is self normalizing. In this case, $H$ is called a Frobenius complement and $G$ is said to be a Frobenius group. A first main result in this thesis is the following generalization of Frobenius' Theorem. textbf{Theorem...
Automorphisms of curve complexes on nonorientable surfaces
Atalan, Ferihe; Korkmaz, Mustafa (2014-01-01)
For a compact connected nonorientable surface N of genus g with n boundary components, we prove that the natural map from the mapping class group of N to the automorphism group of the curve complex of N is an isomorphism provided that g + n >= 5. We also prove that two curve complexes are isomorphic if and only if the underlying surfaces are diffeomorphic.
Prime graphs of solvable groups
Ulvi , Muhammed İkbal; Ercan, Gülin; Department of Electrical and Electronics Engineering (2020-8)
If $G$ is a finite group, its prime graph $Gamma_G$ is constructed as follows: the vertices are the primes dividing the order of $G$, two vertices $p$ and $q$ are joined by an edge if and only if $G$ contains an element of order $pq$. This thesis is mainly a survey that gives some important results on the prime graphs of solvable groups by presenting their proofs in full detail.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. I. Baykur and M. Korkmaz, “The mapping class group is generated by two commutators,”
JOURNAL OF ALGEBRA
, pp. 278–291, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89530.