Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A signal overshoot suppression circuit for digital step attenuators
Date
2017-03-01
Author
Kocer, Fatih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
151
views
0
downloads
Cite This
This paper presents a novel control circuit that eliminates signal overshoot inherent to digital step attenuators (DSA) during state transitions. With the addition of digital delay elements, transitions from attenuation state to insertion loss state is delayed with respect to the transition from the insertion loss state to the attenuation state. This prevents unintended signal leakage to the output, eliminating possible signal overshoot. Since this novel technique achieves signal overshoot suppression with a simple addition to the digital control circuit, it is area efficient, and can be applied to any digital attenuator without degrading its RF performance. To present its effectiveness, the proposed technique is employed in a 6-bit DSA. The resulting reduced-overshoot DSA is manufactured in a commercial 0.18 mu m Silicon-On-Insulator (SOI) process. Measurement results show that this technique successfully suppresses the signal overshoot to less than 0.2 dB.
Subject Keywords
Digital Step Attenuator
,
Digital Attenuator
,
Overshoot Free Attenuator
,
Glitch Free Attenuator
URI
https://hdl.handle.net/11511/63837
Journal
MICROELECTRONICS JOURNAL
DOI
https://doi.org/10.1016/j.mejo.2017.01.008
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A Phase Coherent 7-bit Digital Step Attenuator on 0.18 mu m SOI
Jarihani, Arash Ebrahimi; Kocer, Fatih (2017-10-10)
We present a novel digital step attenuator (DSA) with low phase variation under attenuation state and frequency changes. This is achieved while keeping all other specifications comparable with the state-of-the-art. To compensate the phase shift, a number of switchable phase compensating blocks are employed. Unlike previous studies, this work achieves very low phase variation in a commercial, 4x4 quad-flat no-leads (QFN) package, where wirebond effects are significant. The proposed attenuator has 7-bit contr...
A current mirroring integration based readout circuit for high performance infrared FPA applications
Külah, Haluk; Akın, Tayfun (2003-04-01)
This paper reports a current mirroring integration (CMI) CMOS readout circuit for high-resolution infrared focal plane array (FPA) applications. The circuit uses a feedback structure with current mirrors to provide stable bias voltage across the photodetector diode, while mirroring the diode current to an integration capacitor. The integration capacitor can be placed outside of the unit pixel, reducing the pixel area and allowing to integrate the current on larger capacitance for larger charge storage capac...
A readout circuit for QWIP infrared detector arrays using current mirroring integration
Tepegoz, M; Akın, Tayfun (2003-09-18)
This paper reports a current mirroring integration (CMI) CMOS readout circuit for high-resolution Quantum Well Infrared Photodetectors (QWIPs). The circuit uses a feedback structure with current mirrors to provide stable bias voltage across the photodetectors, which can be adjusted between 0 V and 3.5V. The photodetector current is mirrored to an integration capacitor which can be placed outside of the unit pixel, reducing the pixel area and allowing to integrate the current on larger capacitances for large...
A self-powered integrated interface circuit for low power piezoelectric energy harvesters
Chamanian, S.; Zorlu, O.; Külah, Haluk; Muhtaroglu, A. (2013-12-18)
This paper presents a CMOS integrated interface circuit for piezoelectric energy harvesters (PEH). A fully self-powered circuit, based on Synchronous Electric Charge extraction (SECE) technique, is implemented for non-resonant piezoelectric harvesters generating low power, in 10s to 100s mu W range. The circuit is realized in standard 180 nm UMC CMOS technology. A switch control circuit is designed and optimized to extract maximum power independently from excitation changes of the PEH. The total power loss ...
A 1024x768-12 mu m digital ROIC for uncooled microbolometer FPAs (Conference Presentation)
Akın, Tayfun (2017-04-13)
This paper reports the development of a new digital microbolometer Readout Integrated Circuit (D-ROIC), called MT10212BD. It has a format of 1024 × 768 (XGA) and a pixel pitch of 12μm. MT10212BD is Mikro Tasarim’s second 12μm pitch microbolometer ROIC, which is developed specifically for surface micro machined microbolometer detector arrays with small pixel pitch using high-TCR pixel materials, such as VOx and a Si. MT10212BD has an alldigital system on-chip architecture, which generates programmable timing...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Kocer, “A signal overshoot suppression circuit for digital step attenuators,”
MICROELECTRONICS JOURNAL
, pp. 123–129, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63837.