Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
INTERESTING FEATURES OF AN ACTIVATED CARBON-SUPPORTED UREASE SYSTEM
Date
1994-03-01
Author
KIBARER, G
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
128
views
0
downloads
Cite This
Spherical activated carbon was employed as a new support material for the immobilization of urease. Activity and kinetic behavior of the enzyme were observed. Urease activity was decreased by 10% for the uncoated samples during the washing process whereas a 30% reduction in activity was observed for the coated samples due to the electrical discharge. Activity versus time plots generally appeared to be s-shaped curves at different initial urea levels. At high substrate concentration the kinetics no longer obeyed the Michaelis-Menten relationship due to the inhibition mechanism and diffusion for the support system.
Subject Keywords
Medicine (miscellaneous)
,
Bioengineering
,
Biomaterials
,
Biomedical Engineering
,
General Medicine
URI
https://hdl.handle.net/11511/64098
Journal
ARTIFICIAL ORGANS
DOI
https://doi.org/10.1111/j.1525-1594.1994.tb02180.x
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Porous clinoptilolite-nano biphasic calcium phosphate scaffolds loaded with human dental pulp stem cells for load bearing orthopedic applications
Alshemary, Ammar Zeıdan Ghaılan; Pazarçeviren, Ahmet Engin; Keskin, Dilek; Tezcaner, Ayşen; Hussain, Rafaqat; Evis, Zafer (IOP Publishing, 2019-09-01)
Clinoptilolite (Cpt)-nanohydroxyapatite (HA) (Cpt-HA) scaffolds were fabricated as a potential material for load bearing orthopaedic applications. Cpt-HA materials were successfully synthesized by using microwave assisted reflux method followed by the fabrication of three-dimensional (3D) porous scaffold via thermal decomposition process using polyethylene glycol (PEG)/polyvinyl alcohol (PVA) as porogens. The scaffold materials were characterized using x-ray diffraction, Fourier transform Infra-red, Scannin...
Numerical investigation of wall pressure fluctuations downstream of concentric and eccentric blunt stenosis models
Ozden, Kamil; Sert, Cüneyt; Yazıcıoğlu, Yiğit (SAGE Publications, 2020-01-01)
Pressure fluctuations that cause acoustic radiation from vessel models with concentric and eccentric blunt stenoses are investigated. Large eddy simulations of non-pulsatile flow condition are performed using OpenFOAM. Calculated amplitude and spatial-spectral distribution of acoustic pressures at the post-stenotic region are compared with previous experimental and theoretical results. It is found that increasing the Reynolds number does not change the location of the maximum root mean square wall pressure,...
Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation
Pazarçeviren, Ahmet Engin; Altunbas, Korhan; Yaprakci, Volkan; Erdemli, Ozge; Keskin, Dilek; Tezcaner, Ayşen (Wiley, 2020-01-01)
In this study, clinoptilolite (CLN) was employed as a reinforcement in a polymer-based composite scaffold in bone tissue engineering and evaluated in vivo for the first time. Highly porous, mechanically stable, and osteogenic CLN/PCL-PEG-PCL (CLN/PCEC) scaffolds were fabricated with modified particulate leaching/compression molding technique with varying CLN contents. We hypothesized that CLN reinforcement in a composite scaffold will improve bone regeneration and promote repair. Therefore, the scaffolds we...
Analyses of extracellular protein production in Bacillus subtilis - I: Genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data
KOCABAŞ, PINAR; Çalık, Pınar; ÇALIK GARCİA, GÜZİDE; Ozdamar, Tuncer H. (Elsevier BV, 2017-11-15)
Bacillus subtilis genome-scale model (GEM) reconstruction was stimulated by the recent sequencing and consequent re-annotations. The updated gene-enzyme-reaction data were collected from databases to reconstruct B. subtilis reaction network BsRN-2016 containing 1144 genes linked to 1955 reactions and 1103 metabolites. Thermodynamic analysis was conducted to identify reversibility and directionality of the reactions. By elimination of unconnected-reactions from BsRN-2016, reconstruction process of the first ...
Investigation, Modeling and Design of a Cathodic Protection System for Hull Structures in Marine Environment
Aksu, R.; Uguz, R. O.; ERDOĞAN, MUSTAFA; Meco, H.; Karakaya, İshak (2016-06-02)
The corrosion behaviors of metallic components from hull structures of an amphibious vehicle in seawater were investigated. Selected steel types and aluminum alloys were subjected to accelerated corrosion tests in artificial seawater to collect data for simulation of cathodic protection with sacrificial anodes. The electrochemical data obtained via potentiostatic tests were used to simulate cathodic protection of the metallic components under seawater. Potential distributions in marine environment were eval...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. KIBARER, “INTERESTING FEATURES OF AN ACTIVATED CARBON-SUPPORTED UREASE SYSTEM,”
ARTIFICIAL ORGANS
, pp. 222–226, 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64098.