Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Hydraulic adjustments of the Bosphorus exchange flow
Date
2005-03-19
Author
Oguz, T
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
170
views
0
downloads
Cite This
A three dimensional model elucidates connection between observed internal hydraulic characteristics of the Bosphorus flow and channel configuration. A typical two-layer, quasi-steady exchange flow system is shown to be hydraulically adjusted within the strait by a series of morphological features. Three successive hydraulic controls occur within the southern 10 km zone: first near the southern exit due to convex bending of the channel, then at the southern sill and at the constriction. Finally, the exchange flow system experiences another hydraulic control at the northern sill near the Black Sea entrance of the strait. The upper and lower layer flows exiting from the strait at both ends with currents of similar to 1.0 m s(-1), layer depths of similar to 10 m and g' similar to 0.1 ms(-2) thus impose maximal exchange conditions.
Subject Keywords
General Earth and Planetary Sciences
,
Geophysics
URI
https://hdl.handle.net/11511/64099
Journal
GEOPHYSICAL RESEARCH LETTERS
DOI
https://doi.org/10.1029/2005gl022353
Collections
Graduate School of Marine Sciences, Article
Suggestions
OpenMETU
Core
EARTHQUAKE GROUND MOTION CHARACTERISTICS AND SEISMIC ENERGY-DISSIPATION
Sucuoğlu, Haluk (Wiley, 1995-09-01)
The sensitivity of seismic energy dissipation to ground motion and system characteristics is assessed. It is found that peak ground acceleration, peak ground velocity to acceleration (V/A), dominant period of ground excitation and effective response duration are closely correlated with the energy dissipated by a SDOF system. Ductility ratio and damping ratio have no significant influence on the energy dissipation. An energy dissipation index is proposed for measuring the damage potential of earthquake groun...
Planar seismic source characterization models developed for probabilistic seismic hazard assessment of Istanbul
Gülerce, Zeynep; Guner, Baris; Kaymakcı, Nuretdin (Copernicus GmbH, 2017-12-22)
This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Duzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault len...
Seismic energy dissipation in deteriorating systems through low-cycle fatigue
Erberik, Murat Altuğ; Sucuoğlu, Haluk (Wiley, 2004-01-01)
Energy dissipation characteristics of structural members which exhibit both strength and stiffness deterioration under imposed displacement reversals are investigated. In the experimental part, 17 reinforced concrete beam specimens were tested under constant and variable amplitude inelastic displacement cycles. The constant-amplitude tests were employed to determine the low-cycle fatigue behaviour of specimens where the imposed displacement amplitude was the major variable. A two-parameter fatigue model was...
PREDICTION OF SEISMIC ENERGY-DISSIPATION IN SDOF SYSTEMS
NURTUG, A; Sucuoğlu, Haluk (Wiley, 1995-09-01)
A simple analytical procedure is developed for calculating the seismic energy dissipated by a linear SDOF system under an earthquake ground excitation. The ground excitation is specified by its pseudo-velocity spectra and effective duration whereas the SDOF system is defined by its natural period of vibration and viscous damping ratio. However, the derived relationship for the energy dissipation demand under an earthquake excitation is sensitive neither to the viscous damping ratio nor the ductility ratio w...
Sectorized approach and measurement reduction for mutual coupling calibration of non-omnidirectional antenna arrays
Aksoy, Taylan; Tuncer, Temel Engin (American Geophysical Union (AGU), 2013-03-01)
Mutual coupling calibration is an important problem for antenna arrays. There are different methods proposed for omnidirectional antennas in the literature. However, many practical antennas have non-omnidirectional (NOD) characteristics. Hence, the previous mutual coupling calibration methods cannot be applied directly since the mutual coupling matrix of an NOD antenna array has angular dependency. In this paper, a sectorized approach is proposed with a transformation matrix for mutual coupling calibration ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Oguz, “Hydraulic adjustments of the Bosphorus exchange flow,”
GEOPHYSICAL RESEARCH LETTERS
, pp. 0–0, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64099.