Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An observation on realcompact spaces
Download
index.pdf
Date
2006-01-01
Author
Ercan, Z
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
148
views
57
downloads
Cite This
We give a characterization of realcompact spaces in terms of nets. By using the technique of this characterization we give easy proofs of the Tychonoff Theorem and the Alaoglu Theorem.
Subject Keywords
Applied Mathematics
,
General Mathematics
URI
https://hdl.handle.net/11511/64140
Journal
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
DOI
https://doi.org/10.1090/s0002-9939-05-08012-3
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
A note on Riesz spaces with property-b
Alpay, S.; Altin, B.; Tonyali, C. (Institute of Mathematics, Czech Academy of Sciences, 2006-01-01)
We study an order boundedness property in Riesz spaces and investigate Riesz spaces and Banach lattices enjoying this property.
Concrete description of CD0(K)-spaces as C(X)-spaces and its applications
Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We prove that for a compact Hausdorff space K without isolated points, CD0(K) and C(K x {0, 1}) are isometrically Riesz isomorphic spaces under a certain topology on K x {0, 1}. Moreover, K is a closed subspace of K x {0, 1}. This provides concrete examples of compact Hausdorff spaces X such that the Dedekind completion of C(X) is B(S) (= the set of all bounded real-valued functions on S) since the Dedekind completion of CD0(K) is B(K) (CD0(K, E) and CDw (K, E) spaces as Banach lattices).
A formula for the joint local spectral radius
Emel'yanov, EY; Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We give a formula for the joint local spectral radius of a bounded subset of bounded linear operators on a Banach space X in terms of the dual of X.
Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes
Lefloch, Philippe G.; Okutmuştur, Baver; Neves, Wladimir (Springer Science and Business Media LLC, 2009-07-01)
Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L (1)-error estimate for a class of finite volume schemes allowing for the approximation of entropy solutions to the initial value problem. The error in the L (1) norm is of order h (1/4) at most, where h represents the maximal diameter of elements in the family of geodesic triangulations. The proof relies on a suitable generalization of Cockburn, Coquel, and LeFloch's theo...
On homology of real algebraic varieties
Ozan, Yıldıray (American Mathematical Society (AMS), 2001-01-01)
Let R be a commutative ring with unity and X an R-oriented compact nonsingular real algebraic variety of dimension n. If i : X --> X-C is any nonsingular complexification of X, then the kernel, which we will denote by KHk(X, R), of the induced homomorphism i(*) : H-k(X, R) --> H-k(X-C, R) is independent of the complexification. In this work, we study KHk(X, R) and give some of its applications.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Ercan, “An observation on realcompact spaces,”
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
, pp. 917–920, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64140.